scholarly journals Microstructure Evaluation Study of Al5083 Alloy Using EBSD Technique after Processing with Different ECAP Processes and Temperatures

Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 862
Author(s):  
Muneer Baig ◽  
Asiful H. Seikh ◽  
Ateekh Ur Rehman ◽  
Jabair A. Mohammed ◽  
Faraz Hussain Hashmi ◽  
...  

The temperature effects on the microstructural evolution of a coarse-grained Al5083 alloy during equal channel angular pressing (ECAP), were studied at ambient and high temperatures. The microstructural evaluation was done using an EBSD (electron backscattering diffraction) process. The grain refinement occurred as the number of passes increased, which had a positive effect on its strength. Additionally, increasing the pressing temperature leads to a decrease in the new grain’s formation and an increase in the normal grain size in the third pass. This can be ascribed to the unwinding of strain similarity between the grains because of the continuous activity of dynamic recuperation and the grain limit sliding occurring at a higher temperature. The attainment of grain refinement is examined exhaustively in this study.

2012 ◽  
Vol 710 ◽  
pp. 241-246 ◽  
Author(s):  
R. Manna ◽  
N.K. Mukhopadhyay ◽  
G.V.S. Sastry

Billets of aluminum and aluminum alloys have been deformed at room temperature using a die having equal channels of 10 mm diameter intersecting at an inner angle of 120° and outer arc of 60° by equal channel angular pressing (ECAP) to ultra fine grain (UFG) size level, adopting route Bc. Mechanical properties were evaluated by tensile testing and microhardness measurement. Effects of alloying elements on strengthening were explored. The strengths increase rapidly at first few passes and then reach to a saturation level. The improvement in strength at initial passes of ECAP is due to work hardening and subgrain or dislocation cell formation. However, strengthening at large number of passes is due to the grain refinement alone. The rate of strengthening as a function equivalent strain decreases to a minimum. The strengthening level of bulk UFG alloys is about 3.5 to 4.5 times to that of starting materials. The major cause of strengthening is grain refinement apart from solute strengthening. Among Mg, Zn and Ag alloying elements, the strengthening effect is highest for Mg and lowest for Ag. Ductility is regained without affecting the strength after sufficient number of passes when microstructure becomes equiaxed and ultra-fine in size. However, ductility of UFG Al alloys is lower than that of their coarse grained counterpart.


2014 ◽  
Vol 937 ◽  
pp. 162-167 ◽  
Author(s):  
Xiao Mei He ◽  
Shan Shan Zhu ◽  
Cong Hui Zhang

Equal Channel Angular Pressing (ECAP) and Surface Mechanical Attrition (SMAT) are the two Severe Plastic Deformation (SPD) processes that have been used to process ultrafine grained (UFG) materials. These two kinds of processes have been used to refine the grain size of coarse-grained commercial pure titanium (CP-Ti). The development of microstructure during equal channel angular pressing (ECAP) and surface mechanical attrition (SMAT) of commercial pure titanium (CP-Ti) is investigated to establish the mechanisms of grain refinement. Based on the various experimental results and analysis, it has been found that the high-strain-rate and many direction loading is conducive to the formation of nanograins and also the grains with less than 100 nm cannot be obtained by the single equal channel angular pressing (ECAP).


2010 ◽  
Vol 667-669 ◽  
pp. 833-838
Author(s):  
Mahmoud S. Soliman ◽  
Ehab A. El-Danaf ◽  
Abdulhakim A. Almajid

In the present investigation, annealed billets of commercially pure Al (1050) with coarse-grained microstructure of 0.6 mm were ECAPed through a die with an internal angle of 90o using two routes A and BC. The samples were processed up to four passes using both routes. The change in the processing route results in the change of the shear plane, and consequently the change in the produced microstructure. The microstructure study was conducted on the extrusion direction and the shear plane. The cell size, misoriention and the fraction of high angle boundaries were determined by using electron back scattered diffraction (EBSD). A study of mechanical behavior was conducted by cutting tensile and compression specimens from the ECAPed specimen in the extrusion direction to study the effect of processing route and the number of passes on the deformation characteristics. Enhanced strength was observed but with anisotropic behavior between tension and compression. Cyclic deformation under load control (HSF) was also performed and the S-N curves were established as a function of number of passes and processing route. The fractography of fractured tensile specimens was also investigated.


2014 ◽  
Vol 922 ◽  
pp. 862-867 ◽  
Author(s):  
Daria Zhemchuzhnikova ◽  
Rustam Kaibyshev

An aluminum alloy with a chemical composition of Al–6%Mg–0.35%Mn–0.2%Sc–0.08%Zr–0.07%Cr (in wt.) and an initial grain size of ∼22 μm was subjected to equal-channel angular pressing (ECAP) at 593 K up to a total strain of ~12. Extensive grain refinement provided the formation of fully recrystallized structure with an average grain size of ∼0.6 μm. The mechanical properties of the alloy in two different structural conditions were examined at temperatures ranging from 77 to 293 K. It was shown that ECAP highly enhanced the strength, ductility and fracture toughness of the material over the wide temperature interval. Positive effect of grain refinement tends to increase with decreasing temperature due to suppression of brittle intergranular fracture. At ambient temperature, the extensive grain refinement provides +65% increase in yield stress (YS) and ductility, concurrently. At 77 K, YS increase is + 77%, and the ductility increase is +113% owing to grain refinement. Effect of the grain size on fracture toughness at cryogenic temperatures is discussed.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3961
Author(s):  
Hussein Al-Hazmi ◽  
Xi Lu ◽  
Dominika Grubba ◽  
Joanna Majtacz ◽  
Przemysław Kowal ◽  
...  

The short-term effects of temperature on deammonification sludge were evaluated in a laboratory-scale sequencing batch reactor (SBR). Mathematical modeling was used for further evaluations of different intermittent aeration strategies for achieving high and stable deammonification performance at decreasing temperatures. As for the biomass cultivated at high temperatures (e.g., 30 °C), a higher temperature dependency (the adjusted Arrhenius coefficient θ for 11–17 °C = 1.71 vs. θ for 17–30 °C = 1.12) on the specific anammox growth rates was found at lower temperatures (11–17 °C) in comparison with higher temperatures (17–30 °C). Further evaluations of recovering the nitrogen removal efficiency at decreasing temperatures with the mathematical model by modifying the intermittent aeration strategies (aeration frequency (F) and the ratio (R) between non-aerated (non-aer) phase and aerated (aer) phase durations) indicated that intermittent aeration with a prolonged non-aerated phase (e.g., R ≥ 4 regardless of F value) would help to maintain high and stable deammonification performance (~80%) at decreasing temperatures (14–22 °C). Extending the non-aerated phases (increasing R) and reducing the frequency (F) of off/on phase changes have a positive effect on increasing energy savings, leading to increasing interest in this method.


2007 ◽  
Vol 558-559 ◽  
pp. 575-580 ◽  
Author(s):  
Werner Skrotzki ◽  
Burghardt Klöden ◽  
I. Hünsche ◽  
Robert Chulist ◽  
Satyam Suwas ◽  
...  

3N nickel has been deformed by equal channel angular pressing (ECAP) at 400°C up to 3 passes using route A. The texture with respect to position in the deformed billet, i.e. from top to bottom, has been measured with high-energy synchrotron radiation. It is characterized by texture components typical for simple shear in the intersection plane of the square-shaped 90° bent channel. Besides, an oblique cube component is observed. Orientation imaging microscopy clearly shows that this component is due to partial recrystallization. Intensities of the texture components as well as deviations from their ideal shear positions vary from the top to the bottom of the billet and with the number of passes. The change of the intensity of texture components and the texture gradient investigated is discussed. Special emphasis is put on the influence of dynamic recrystallization on texture and microstructure formation during ECAP of fcc metals.


2015 ◽  
Vol 1114 ◽  
pp. 3-8
Author(s):  
Nicolae Şerban ◽  
Doina Răducanu ◽  
Nicolae Ghiban ◽  
Vasile Dănuţ Cojocaru

The properties of ultra-fine grained materials are superior to those of corresponding conventional coarse grained materials, being significantly improved as a result of grain refinement. Equal channel angular pressing (ECAP) is an efficient method for modifying the microstructure by refining grain size via severe plastic deformation (SPD) in producing ultra-fine grained materials (UFG) and nanomaterials (NM). The grain sizes produced by ECAP processing are typically in the submicrometer range and this leads to high strength at ambient temperatures. ECAP is performed by pressing test samples through a die containing two channels, equal in cross-section and intersecting at a certain angle. The billet experiences simple shear deformation at the intersection, without any precipitous change in the cross-section area because the die prevents lateral expansion and therefore the billet can be pressed more than once and it can be rotated around its pressing axis during subsequent passes. After ECAP significant grain refinement occurs together with dislocation strengthening, resulting in a considerable enhancement in the strength of the alloys. A commercial AlMgSi alloy (AA6063) was investigated in this study. The specimens were processed for a number of passes up to nine, using a die channel angle of 110°, applying the ECAP route BC. After ECAP, samples were cut from each specimen and prepared for metallographic analysis. The microstructure of the ECAP-ed and as-received material was investigated using optical (OLYMPUS – BX60M) and SEM microscopy (TESCAN VEGA II – XMU). It was determined that for the as-received material the microstructure shows a rough appearance, with large grains of dendritic or seaweed aspect and with a secondary phase at grain boundaries (continuous casting structure). For the ECAP processed samples, the microstructure shows a finished aspect, with refined, elongated grains, also with crumbled and uniformly distributed second phase particles after a typical ECAP texture.


2007 ◽  
Vol 539-543 ◽  
pp. 2904-2909 ◽  
Author(s):  
Vàclav Sklenička ◽  
Jiří Dvořák ◽  
Marie Kvapilová ◽  
Milan Svoboda ◽  
Petr Král ◽  
...  

This paper examines the effect of equal-channel angular pressing (ECAP) on creep behaviour of pure aluminium, binary Al-0.2wt.%Sc alloy and ternary Al-3wt.%Mg-0.2wt.%Sc alloy. The ECAP was conducted at room temperature with a die that had a 90° angle between the channels and 8 repetitive ECAP passes followed route BC. Constant stress compression creep tests were performed at 473 K and stresses ranging between 16 to 80 MPa on ECAP materials and, for comparison purposes, on the initial coarse-grained materials. The results showed that the creep resistance of the ECAP processed Al-Sc and Al-Mg-Sc alloys was markedly deteriorated with respect to unpressed coarse-grained materials.


Materials ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 219
Author(s):  
Bernd-Arno Behrens ◽  
Kai Brunotte ◽  
Tom Petersen ◽  
Roman Relge

The present work deals with adjusting a fine-grained microstructure in iron-rich iron-aluminium alloys using the ECAP-process (Equal Channel Angular Pressing). Due to the limited formability of Fe-Al alloys with increased aluminium content, high forming temperatures and low forming speeds are required. Therefore, tool temperatures above 1100 °C are permanently needed to prevent cooling of the work pieces, which makes the design of the ECAP-process challenging. For the investigation, the Fe-Al work pieces were heated to the respective hot forming temperature in a chamber furnace and then formed in the ECAP tool at a constant punch speed of 5 mm/s. Besides the chemical composition (Fe9Al, Fe28Al and Fe38Al (at.%—Al)), the influences of a subsequent heat treatment and the holding time on the microstructure development were investigated. For this purpose, the average grain size of the microstructure was measured using the AGI (Average Grain Intercept) method and correlated with the aforementioned parameters. The results show that no significant grain refinement could be achieved with the parameters used, which is largely due to the high forming temperature significantly promoting grain growth. The holding times in the examined area do not have any influence on the grain refinement.


2013 ◽  
Vol 803 ◽  
pp. 226-229
Author(s):  
Da Ran Fang ◽  
Chun Liu ◽  
Feng Fang Liu

Al-3.9wt.%Cu alloy was subjected to equal channel angular pressing (ECAP) and subsequent low temperature annealing treatment, and the corrosion resistance of the samples was investigated by potentiodynamic polarization measurements in 3.5% NaCl solution. The results show that the corrosion rate of the ultrafine-grained alloy increases, in comparison with the coarse-grained alloy. Meanwhile, it is noted that the corrosion resistance of the alloy subjected to ECAP can be improved by relief annealing.


Sign in / Sign up

Export Citation Format

Share Document