Effect of Nb Content on the Impact Toughness of Coarse-Grained Heat-Affected Zone of Pipeline Steels under Large Heat Input

2014 ◽  
Vol 1078 ◽  
pp. 3-7
Author(s):  
Feng Zhou ◽  
Zhou Gao ◽  
Kai Ming Wu

The effect of large heat inputs (200 kJ/cm) on the microstructures and toughness of heat-affected zone of Nb microalloyed X70 pipeline steels were simulated utilizing Gleeble-3800. The microstructures were observed by optical microscope, scanning electron microscope and electron backscattered diffraction technique. Results showed that when the large heat input welding was applied, big austenite grains and coarse microstructures were formed in the coarse-grained heat-affected zone, and thus the toughness of the coarse-grained heat-affected zone was seriously reduced. With the increase of Nb content, the toughness of the CGHAZ did not change remarkably under the large heat input welding.

2018 ◽  
Vol 937 ◽  
pp. 61-67
Author(s):  
Yu Jie Li ◽  
Jin Wei Lei ◽  
Xuan Wei Lei ◽  
Oleksandr Hress ◽  
Kai Ming Wu

Utilizing submerged arc welding under heat input 50 kJ/cm on 60 mm thick marine engineering structure plate F550, the effect of preheating and post welding heat treatment on the microstructure and impact toughness of coarse-grained heat-affected zone (CGHAZ) has been investigated. The original microstructure of the steel plate is tempered martensite. The yield and tensile strength is 610 and 660 MPa, respectively. The impact absorbed energy at low temperature (-60 °C) at transverse direction reaches about 230~270 J. Welding results show that the preheating at 100 °C did not have obvious influence on the microstructure and toughness; whereas the tempering at 600 °C for 2.5 h after welding could significantly reduce the amount of M-A components in the coarse-grained heat-affected zone and thus improved the low temperature impact toughness.


2013 ◽  
Vol 762 ◽  
pp. 711-716 ◽  
Author(s):  
Risto O. Laitinen ◽  
David A. Porter ◽  
L. Pentti Karjalainen ◽  
Pasi Leiviskä ◽  
Jukka Kömi

Physical simulation of the most critical sub-zones of the heat-affected zone is a useful tool for the evaluation of the toughness of welded joints in high-strength and ultra-high-strength steels. In two high-strength offshore steels with the yield strength of 500 MPa, the coarse grained, intercritical and intercritically reheated coarse grained zones were simulated using the cooling times from 800 to 500 °C (t8/5) 5 s and 30 s. Impact and CTOD tests as well as microstructural investigations were carried out in order to evaluate the weldability of the steels without the need for expensive welding tests. The test results showed that the intercritically reheated coarse grained zone with the longer cooling time t8/5=30 s was the most critical sub-zone in the HAZ due to the M-A constituents and coarse ferritic-bainitic microstructure. In 6 mm thick ultra-high-strength steel Optim 960 QC, the coarse grained and intercritically reheated coarse grained zones were simulated using the cooling times t8/5 of 5, 10, 15 and 20s and the intercritical zone using the cooling times t8/5 of 5 and 10 s in order to select the suitable heat input for welding. The impact test results from the simulated zones fulfilled the impact energy requirement of 14 J (5x10 mm specimen) at -40 °C for the cooling times, t8/5, from 5 to 15 s, which correspond to the heat input range 0.4-0.7 kJ/mm (for a 6 mm thickness).


2012 ◽  
Vol 538-541 ◽  
pp. 2003-2008 ◽  
Author(s):  
Zheng Hai Xia ◽  
Xiang Liang Wan ◽  
Xue Li Tao ◽  
Kai Ming Wu

The effect of heat input on toughness of coarse-grained heat-affected zone of an ultra low carbon acicular ferrite steel were investigated when the welding was conducted with high heat input. Microstructural observations, energy dispersive X-ray spectroscopy analyses were conducted using optical microscopy, scanning electron microscopy and transmission electron microscopy, respectively. The microstructures of coarse-grained heat-affected zone consist of predominantly bainitic microstructure and a small proportion of acicular ferrite grains. The bainitic microstructures become coarsened with increasing heat input. The impact toughness of coarse-grained heat-affected zone remained at a higher level when the heat input ranged from 42 to 55 kJ/cm. It became not stable and dropped to a lower level when the heat input increased to 110150 kJ/cm. The enhancement in impact toughness was attributable to the MnS precipitation on the pre-formed Ti oxides as well as the formation of intragranular ferrite. When specimens were welded with higher heat input, the deterioration of impact toughness was caused by the coarsening of austenite grains.


2020 ◽  
Vol 117 (4) ◽  
pp. 410
Author(s):  
Ding Min

The toughness property of the coarse grained heat affected zone had become much worse since the large heat input welding was applied in HSLA for improving welding efficiency and reducing welding costs. Unlike previous investigations of the decreasing fracture toughness with heating time, the toughness of coarse grained heat affected zone increases in long heating time. Based on microstructure and mechanical properties, very remarkable impact toughness was obtained when the t8/5 was 80 s: toughness of 171 J. The toughness improvement initiates not from inclusions but directly from the microstructure of substrate. The microstructure type and inclusion level will compete to dominate the toughness of the 5% Ni steel.


2012 ◽  
Vol 538-541 ◽  
pp. 2026-2031 ◽  
Author(s):  
Zhou Gao ◽  
Ran Wei ◽  
Kai Ming Wu

The effect of varying heat inputs (20, 100, 200 kJ/cm) on the microstructures and toughness of the simulated coarse-grained heat-affected zone of a Nb-Ti microalloyed pipeline steel were investigated utilizing optical and electron microscope. Results showed that the impact toughness of the coarse-grained heat-affected zone maintained a higher level at the heat input of 20 and 100 kJ/cm, whereas it dropped to a much lower level at the heat input of 200 kJ/cm. The good toughness was attributed to the grain refinement and the homogenous distribution of fine and elongated martensite/austenite constituents. The deterioration of toughness for high heat input simulated welding was mainly caused by the coarse bainitic microstructure and massive martensite/austenite constituents.


2021 ◽  
Vol 66 (1) ◽  
pp. 23-38
Author(s):  
Singh Pratap ◽  
Judit Kovácsb

The development of high strength aluminium alloy has revolutionized the automotive industry with innovative manufacturing and technological process to provide high-performance components, weight reduction and also diversified the application field and design consideration for the automotive parts that work under severe conditions, but the selection of proper production parameters is most challenging task to get excellent results. Growing industrial demand of aluminium alloys led to the development of new welding technologies, processes and studies of various parameters effects for its intended purposes. The microstructural changes lead to loss of hardening and thereby mechanical strength in the HAZ welded joint even though the base materials are heat treatable and precipitation hardened. So, our goal is to analyse HAZ softening and analyse the sub-zones as a function of the parameter. In this paper, the influence of weld heat cycle on the heat-affected zone (HAZ) is physically simulated for Tungsten Inert Gas Welding (TIG) using Gleeble 3500 thermomechanical simulator for three different automotive aluminium alloy (AA5754-H22, AA6082-T6 & AA7075-T6) plate of 1 mm thickness. In order to simulate the sub-zones of the heat-affected zone, samples were heated to four different HAZ peak temperatures (550 °C, 440 °C, 380 °C and 280 °C), two linear heat input (100 J/mm and 200 J/mm) by the application of Rykalin 2D model. A series of experiments were performed to understand the behaviour, which make it possible to measure the objective data on the basis of the obtained image of the aluminium alloys tested with heat-affected zone tests in a Gleeble 3500 physical simulator. The main objective is to achieve the weldability of three different automotive aluminium alloys and their comparison based on the welding parameters like heat input. Further, the investigation of HAZ softening and microstructure of the specimens were tested and analysed using Vicker's hardness test and optical microscope respectively. The paper focuses on HAZ softening analysis of different grades of aluminium alloys for automotive application.


2021 ◽  
Vol 1027 ◽  
pp. 149-154
Author(s):  
Sen Dong Gu ◽  
Ji Peng Zhao ◽  
Rui Jie Ouyang ◽  
Yong Hong Zhang

In the present study, TA1 titanium alloy sheets with a thickness of 0.8mm were welded by electron beam welding. Microstructure of the welded region was investigated using optical microscope and electron backscattered diffraction. Then, the tensile test was conducted to analyse the tensile behavior of the welded sheets as well as the fractography of the fracture surfaces. It is shown that the mean grain size in the heat-affected zone is smaller than that in the fusion zone and base material. The strength of the base metal is lower than that of the fusion zone and heat-affected zone. The average values of the yield strength, tensile strength and elongation of the tensile specimens are 224MPa, 335MPa and 35%, respectively. In addition, the tensile specimens of the welded sheets suffer both ductile and brittle deformation during the tensile tests.


2009 ◽  
Vol 79-82 ◽  
pp. 143-146
Author(s):  
Jiang Hua Ma ◽  
Dong Ping Zhan ◽  
Zhou Hua Jiang ◽  
Ji Cheng He

In order to understand the effects of deoxidizer such as aluminium, titanium and magnesium on the impact toughness of heat affected zone (HAZ), three low carbon steels deoxidized by Ti-Al, Mg and Ti-Mg were obtained. After smelting, forging, rolling and welding simulation, the effects of Al, Ti and Mg addition on the impact toughness of HAZ in low carbon steel were studied. The inclusion characteristics (size, morphology and chemistry) of samples before welding and the fracture pattern of the specimens after the Charpy-type test were respectively analyzed using optical microscope and scanning electron microscopy (SEM). The following results were found. The density of inclusion in Ti-Mg deoxidized steel is bigger than Ti-Al deoxidized steel. The average diameter is decreased for the former than the latter. The addition of Ti-Mg can enhance the impact toughness of the HAZ after welding simulation. The maximal value of the impact toughness is 66.5J/cm2. The complex particles of MgO-TiOx-SiO2-MnS are most benefit to enhance impact toughness. The improvement of HAZ is attributable to the role of particle pinning and the formation of intergranular ferrite.


2020 ◽  
Vol 867 ◽  
pp. 117-124
Author(s):  
Herry Oktadinata ◽  
Winarto Winarto ◽  
Dedi Priadi ◽  
Eddy S. Siradj ◽  
Ario S. Baskoro

The study was conducted to evaluate the impact toughness of flux-cored arc welded of SM570-TMC steel joint under different heat inputs, 0.9 kJ/mm (low heat input) and 1.6 kJ/mm (high heat input). Welding wire containing 0.4%Ni was selected on this experiment. Multi-pass welds were performed on SM570-TMC steel plate of 16 mm in thickness with a single V-groove butt joint on flat position (1G). The evaluation consists of observations on microstructure using an optical microscope and SEM-EDS, and mechanical properties including tensile, microhardness Vickers and Charpy V-notch (CVN) impact test at temperatures of 25, 0 and-20 °C. Results showed that the impact toughness of the base metal (BM) was higher than the weld metal (WM) at all test temperatures. Hardness and impact toughness of WM at low heat input was observed higher than when applied a high heat input. The welded samples at low and high heat inputs had high of tensile strength, and the fracture seemly occurs on the BM. Microstructure observation showed that at a high heat input, larger grains and microsegregation were observed. It might affect on decreasing their impact property.


Sign in / Sign up

Export Citation Format

Share Document