Flotation of quartz using ionic liquid collectors with different functional groups and varying chain lengths

2016 ◽  
Vol 95 ◽  
pp. 107-112 ◽  
Author(s):  
Hrushikesh Sahoo ◽  
Swagat S. Rath ◽  
Bisweswar Das ◽  
Barada Kanta Mishra
Cellulose ◽  
2018 ◽  
Vol 25 (6) ◽  
pp. 3557-3569 ◽  
Author(s):  
Su-Feng Zhang ◽  
Miao-Xiu Yang ◽  
Li-Wei Qian ◽  
Chen Hou ◽  
Rui-Hua Tang ◽  
...  

Crystals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 309 ◽  
Author(s):  
Takahiro Ichikawa ◽  
Yui Sasaki ◽  
Tsubasa Kobayashi ◽  
Hikaru Oshiro ◽  
Ayaka Ono ◽  
...  

We have prepared a series of pyridinium-based gemini amphiphiles. They exhibit thermotropic liquid–crystalline behavior depending on their alkyl chain lengths and anion species. By adjusting the alkyl chain lengths and selecting suitable anions, we have obtained an ionic amphiphile that exhibits a normal-type bicontinuous cubic phase from 38 °C to 12 °C on cooling from an isotropic phase. In the bicontinuous cubic liquid–crystalline assembly, the pyridinium-based ionic parts align along a gyroid minimal surface forming a 3D continuous ionic domain while their ionophobic alkyl chains form 3D branched nanochannel networks. This ionic compound can form homogeneous mixtures with a lithium salt and the resultant mixtures keep the ability to form normal-type bicontinuous cubic phases. Ion conduction measurements have been performed for the mixtures on cooling. It has been revealed that the formation of the 3D branched ionophobic nanochannels does not disturb the ion conduction behavior in the ionic domain while it results in the conversion of the state of the mixtures from fluidic liquids to quasi-solids, namely highly viscous liquid crystals. Although the ionic conductivity of the mixtures is in the order of 10–7 S cm–1 at 40 °C, which is far lower than the values for practical use, the present material design has a potential to pave the way for developing advanced solid electrolytes consisting of two task-specific nanosegregated domains: One is an ionic liquid nano-domain with a 3D continuity for high ionic conductivity and the other is ionophobic nanochannel network domains for high mechanical strength.


2019 ◽  
Vol 30 (3) ◽  
pp. 610-624 ◽  
Author(s):  
Ni Guanhua ◽  
Li Zhao ◽  
Sun Qian ◽  
Li Shang ◽  
Dong Kai

2020 ◽  
Vol 981 ◽  
pp. 98-103
Author(s):  
Mona Alis Md. Yasser ◽  
Zaidi Embong ◽  
Erween Abdul Rahim ◽  
Amiril Sahab Abdullah Sani ◽  
Kamaruddin Kamdani

This study was conducted to investigate the efficiency of Minimum Quantity Lubrication (MQL) technique by using Modified Jatropha Oil (MJO) bio-based lubricant with the presence of 10% Ammonium Ionic Liquid (MJO+AIL10%) and 1% Phosphonium Ionic Liquid (MJO+PIL1%) additives respectively at various temperature of 200 °C, 300 °C and 400 °C heat treatment to determine the ability to exhibit corrosion and wear throughout the process. Fourier-Transform Infrared Spectroscopy (FTIR) analysis revealed prominent peaks of functional groups in these bio-lubricants; esters (C-O) and (C=O), alkanes (C-H), hydroxide (O-H), and nitrile groups deposited on the cutting tool surface. Initially, nitrile group is detected on cutting tool surface without lubricants at 2200 to 2300 absorption band reduced to lower intensity and most likely concealed by MJO+AIL10% compared to MJO+PIL1% where the nitrile group remains reflected in FTIR spectrum. In this work, it is proved that MJO+AIL10% has higher viscosity as compared to MJO+PIL1%. in the context of functional groups and supported the previous study on MJO+AIL10% as corrosion inhibitor.


2014 ◽  
Vol 484-485 ◽  
pp. 66-69
Author(s):  
Xiu Li Zhao ◽  
Chang Bao Zhang ◽  
Cheng Chen ◽  
Guo Qiao Li ◽  
Da Liu

Description is given to preparation of three ionic liquid surfactants containing amine functional groups, characterization of their functional groups using the infrared spectrometer, determination of their surface tension and the oil displacement test in this paper to investigate the effect of alkane branch chains with different carbon numbers on the surface tension and the displacement efficiency. The result shows that, the surfactants exhibit the structural characteristic of the ionic liquid as the characteristic absorption peaks occur on C-N and C-H of the imidazole rings at the wave numbers of 1338cm-1, 1234cm-1, 1465cm-1 and 3142cm-1, respectively. The surface tension isothermal curves and the oil displacement test proved that the ionic liquid imidazole surfactants with shorter-chain groups are more active on surface, with the minimal surface tension up to 32.5 mN/m, and led to higher displacement efficiency, increasing by 3.3% at the concentration of 1000mg/L compared with the water flooding.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2143
Author(s):  
Gokcen A. Ciftcioglu ◽  
Curtis W. Frank

Proton exchange membranes (PEMs) suffer performance degradation under certain conditions—temperatures greater than 80 °C, relative humidity less than 50%, and water retention less than 22%. Novel materials are needed that have improved water retention, stability at higher temperatures, flexibility, conductivity, and the ability to function at low humidity. This work focuses on polyimide-poly(ethylene glycol) (PI-PEG) segmented block copolymer (SBC) membranes with high conductivity and mechanical strength. Membranes were prepared with one of two ionic liquids (ILs), either ethylammonium nitrate (EAN) or propylammonium nitrate (PAN), incorporated within the membrane structure to enhance the proton exchange capability. Ionic liquid uptake capacities were compared for two different temperatures, 25 and 60 °C. Then, conductivities were measured for a series of combinations of undoped or doped unannealed and undoped or doped annealed membranes. Stress and strain tests were performed for unannealed and thermally annealed undoped membranes. Later, these experiments were repeated for doped unannealed and thermally annealed. Mechanical and conductivity data were interpreted in the context of prior small angle X-ray scattering (SAXS) studies on similar materials. We have shown that varying the compositions of polyimide-poly(ethylene glycol) (PI-PEG) SBCs allowed the morphology in the system to be tuned. Since polyimides (PI) are made from the condensation of dianhydrides and diamines, this was accomplished using components having different functional groups. Dianhydrides having either fluorinated or oxygenated functional groups and diamines having either fluorinated or oxygenated diamines were used as well as mixtures of these species. Changing the morphology by creating macrophase separation elevated the IL uptake capacities, and in turn, increased their conductivities by a factor of three or more compared to Nafion 115. The stiffness of the membranes synthesized in this work was comparable to Nafion 115 and, thus, sufficient for practical applications.


Sign in / Sign up

Export Citation Format

Share Document