scholarly journals The role of the Rx homeobox gene in retinal progenitor proliferation and cell fate specification

2018 ◽  
Vol 151 ◽  
pp. 18-29 ◽  
Author(s):  
H.M. Rodgers ◽  
V.J. Huffman ◽  
V.A. Voronina ◽  
M. Lewandoski ◽  
P.H. Mathers
Development ◽  
1997 ◽  
Vol 124 (9) ◽  
pp. 1831-1843 ◽  
Author(s):  
W.C. Forrester ◽  
G. Garriga

The migrations of cells and growth cones contribute to form and pattern during metazoan development. To study the mechanisms that regulate cell motility, we have screened for C. elegans mutants defective in the posteriorly directed migrations of the canal-associated neurons (CANs). Here we describe 14 genes necessary for CAN cell migration. Our characterization of the mutants has led to three conclusions. First, the mutations define three gene classes: genes necessary for cell fate specification, genes necessary for multiple cell migrations and a single gene necessary for final positioning of migrating cells. Second, cell interactions between the CAN and HSN, a neuron that migrates anteriorly to a position adjacent to the CAN, control the final destination of the HSN cell body. Third, C. elegans larval development requires the CANs. In the absence of CAN function, larvae arrest development, with excess fluid accumulating in their pseudocoeloms. This phenotype may reflect a role of the CANs in osmoregulation.


2005 ◽  
Vol 14 (2) ◽  
pp. 140-152 ◽  
Author(s):  
Gurudutta U. Gangenahalli ◽  
Pallavi Gupta ◽  
Daman Saluja ◽  
Yogesh K. Verma ◽  
Vimal Kishore ◽  
...  

2010 ◽  
Vol 138 (5) ◽  
pp. S-566 ◽  
Author(s):  
Yu-Hwai Tsai ◽  
Kelli L. VanDussen ◽  
Howard C. Crawford ◽  
Linda C. Samuelson ◽  
Peter J. Dempsey

2018 ◽  
Vol 55 (9) ◽  
pp. 7107-7117 ◽  
Author(s):  
Raquel Coronel ◽  
Adela Bernabeu-Zornoza ◽  
Charlotte Palmer ◽  
Mar Muñiz-Moreno ◽  
Alberto Zambrano ◽  
...  

2019 ◽  
Author(s):  
Miguel Salinas-Saavedra ◽  
Athula H. Wikramanayake ◽  
Mark Q Martindale

AbstractThe ß-catenin protein has two major known functions in animal cells. It keeps epithelial tissue homeostasis by its connection with Adherens Junctions (AJ), and it serves as a transcriptional cofactor along with Lef/Tcf to enter the nucleus and regulate target genes of the Wnt/ß-catenin (cWnt) signaling pathway. To assess the ancestral role of ß-catenin during development we examined its distribution and function in the ctenophore Mnemiopsis leidyi (one of the earliest branching animal phyla) by using ctenophore-specific antibodies and mRNA injection. We found that ß-catenin protein never localizes to cell-cell contacts during embryogenesis as it does in other metazoans, most likely because ctenophore-cadherins do not have the cytoplasmic domain required for interaction with the catenin proteins. Downregulation of zygotic Mlß-catenin signaling led to the loss of endodermal and mesodermal tissues indicating that nuclear ß-catenin may have a deep role in germ-layer evolution. Our results indicate that the ancestral role for ß-catenin was in the cell-fate specification and not in cell adhesion and also further emphasizes the critical role of this protein in the evolution of tissue layers in metazoans.


2020 ◽  
Vol 98 (1) ◽  
pp. 50-60 ◽  
Author(s):  
Connor O’Sullivan ◽  
Philip E.B. Nickerson ◽  
Oliver Krupke ◽  
Jennifer Christie ◽  
Li-Li Chen ◽  
...  

During a developmental period that extends postnatally in the mouse, proliferating multipotent retinal progenitor cells produce one of 7 major cell types (rod, cone, bipolar, horizontal, amacrine, ganglion, and Müller glial cells) as they exit the cell cycle in consecutive waves. Cell production in the retina is tightly regulated by intrinsic, extrinsic, spatial, and temporal cues, and is coupled to the timing of cell cycle exit. Arsenic-resistance protein 2 (ARS2, also known as SRRT) is a component of the nuclear cap-binding complex involved in RNA Polymerase II transcription, and is required for cell cycle progression. We show that postnatal retinal progenitor cells (RPCs) require ARS2 for proper progression through S phase, and ARS2 disruption leads to early exit from the cell cycle. Furthermore, we observe an increase in the proportion of cells expressing a rod photoreceptor marker, and a loss of Müller glia marker expression, indicating a role for ARS2 in regulating cell fate specification or differentiation. Knockdown of Flice Associated Huge protein (FLASH), which interacts with ARS2 and is required for cell cycle progression and 3′-end processing of replication-dependent histone transcripts, phenocopies ARS2 knockdown. These data implicate ARS2–FLASH-mediated histone mRNA processing in regulating RPC cell cycle kinetics and neuroglial cell fate specification during postnatal retinal development.


2010 ◽  
Vol 337 (2) ◽  
pp. 415-424 ◽  
Author(s):  
Christian Berger ◽  
Ramakrishnan Kannan ◽  
Sudharani Myneni ◽  
Simone Renner ◽  
L.S. Shashidhara ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document