scholarly journals Context-Dependent Wiring of Sox2 Regulatory Networks for Self-Renewal of Embryonic and Trophoblast Stem Cells

2013 ◽  
Vol 52 (3) ◽  
pp. 380-392 ◽  
Author(s):  
Kenjiro Adachi ◽  
Itoshi Nikaido ◽  
Hiroshi Ohta ◽  
Satoshi Ohtsuka ◽  
Hiroki Ura ◽  
...  
2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Bum-Kyu Lee ◽  
Yu jin Jang ◽  
Mijeong Kim ◽  
Lucy LeBlanc ◽  
Catherine Rhee ◽  
...  

Abstract Trophectoderm (TE) lineage development is pivotal for proper implantation, placentation, and healthy pregnancy. However, only a few TE-specific transcription factors (TFs) have been systematically characterized, hindering our understanding of the process. To elucidate regulatory mechanisms underlying TE development, here we map super-enhancers (SEs) in trophoblast stem cells (TSCs) as a model. We find both prominent TE-specific master TFs (Cdx2, Gata3, and Tead4), and >150 TFs that had not been previously implicated in TE lineage, that are SE-associated. Mapping targets of 27 SE-predicted TFs reveals a highly intertwined transcriptional regulatory circuitry. Intriguingly, SE-predicted TFs show 4 distinct expression patterns with dynamic alterations of their targets during TSC differentiation. Furthermore, depletion of a subset of TFs results in dysregulation of the markers for specialized cell types in placenta, suggesting a role during TE differentiation. Collectively, we characterize an expanded TE-specific regulatory network, providing a framework for understanding TE lineage development and placentation.


2009 ◽  
Vol 334 (2) ◽  
pp. 325-334 ◽  
Author(s):  
Maite Rielland ◽  
Vincent Brochard ◽  
Marie-Christine Lacroix ◽  
Jean-Paul Renard ◽  
Alice Jouneau

2018 ◽  
Vol 11 (6) ◽  
pp. 463-473 ◽  
Author(s):  
Haibo Gao ◽  
Rui Gao ◽  
Linfeng Zhang ◽  
Wenchao Xiu ◽  
Ruge Zang ◽  
...  

Abstract Trophoblast stem cells (TSCs), which can be derived from the trophoectoderm of a blastocyst, have the ability to sustain self-renewal and differentiate into various placental trophoblast cell types. Meanwhile, essential insights into the molecular mechanisms controlling the placental development can be gained by using TSCs as the cell model. Esrrb is a transcription factor that has been shown to play pivotal roles in both embryonic stem cell (ESC) and TSC, but the precise mechanism whereby Esrrb regulates TSC-specific transcriptome during differentiation and reprogramming is still largely unknown. In the present study, we elucidate the function of Esrrb in self-renewal and differentiation of TSCs, as well as during the induced TSC (iTSC) reprogramming. We demonstrate that the precise level of Esrrb is critical for stem state maintenance and further trophoblast differentiation of TSCs, as ectopically expressed Esrrb can partially block the rapid differentiation of TSCs in the absence of fibroblast growth factor 4. However, Esrrb depletion results in downregulation of certain key TSC-specific transcription factors, consequently causing a rapid differentiation of TSCs and these Esrrb-deficient TSCs lose the ability of hemorrhagic lesion formation in vivo. This function of Esrrb is exerted by directly binding and activating a core set of TSC-specific target genes including Cdx2, Eomes, Sox2, Fgfr4, and Bmp4. Furthermore, we show that Esrrb overexpression can facilitate the MEF-to-iTSC conversion. Moreover, Esrrb can substitute for Eomes to generate GEsTM-iTSCs. Thus, our findings provide a better understanding of the molecular mechanism of Esrrb in maintaining TSC self-renewal and during iTSC reprogramming.


2015 ◽  
Vol 290 (36) ◽  
pp. 22019-22029 ◽  
Author(s):  
Gaoyang Zhu ◽  
Teng Fei ◽  
Zhongwei Li ◽  
Xiaohua Yan ◽  
Ye-Guang Chen

Placenta ◽  
2017 ◽  
Vol 60 ◽  
pp. S57-S60 ◽  
Author(s):  
Ching-Wen Chang ◽  
Mana M. Parast

2007 ◽  
Vol 14 (6) ◽  
pp. 534-547 ◽  
Author(s):  
Wenjing Zhong ◽  
Yufen Xie ◽  
Yingchun Wang ◽  
Jennifer Lewis ◽  
Anna Trostinskaia ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kylie Hin-Man Mak ◽  
Yuk Man Lam ◽  
Ray Kit Ng

AbstractTrophoblast stem cell (TSC) is crucial to the formation of placenta in mammals. Histone demethylase JMJD2 (also known as KDM4) family proteins have been previously shown to support self-renewal and differentiation of stem cells. However, their roles in the context of the trophoblast lineage remain unclear. Here, we find that knockdown of Jmjd2b resulted in differentiation of TSCs, suggesting an indispensable role of JMJD2B/KDM4B in maintaining the stemness. Through the integration of transcriptome and ChIP-seq profiling data, we show that JMJD2B is associated with a loss of H3K36me3 in a subset of embryonic lineage genes which are marked by H3K9me3 for stable repression. By characterizing the JMJD2B binding motifs and other transcription factor binding datasets, we discover that JMJD2B forms a protein complex with AP-2 family transcription factor TFAP2C and histone demethylase LSD1. The JMJD2B–TFAP2C–LSD1 complex predominantly occupies active gene promoters, whereas the TFAP2C–LSD1 complex is located at putative enhancers, suggesting that these proteins mediate enhancer–promoter interaction for gene regulation. We conclude that JMJD2B is vital to the TSC transcriptional program and safeguards the trophoblast cell fate via distinctive protein interactors and epigenetic targets.


2017 ◽  
Vol 8 (2) ◽  
pp. e2631-e2631 ◽  
Author(s):  
Josefina Castex ◽  
Dominica Willmann ◽  
Toufike Kanouni ◽  
Laura Arrigoni ◽  
Yan Li ◽  
...  

2020 ◽  
Author(s):  
Jenna Kropp Schmidt ◽  
Michael G. Meyer ◽  
Gregory J. Wiepz ◽  
Lindsey N. Block ◽  
Brittany M. Dusek ◽  
...  

AbstractNonhuman primates are excellent models for studying human placentation as experimental manipulations in vitro can be translated to in vivo pregnancy. Our objective was to develop macaque trophoblast stem cells (TSC) as an in vitro platform for future assessment of primate trophoblast development and function. Macaque TSC lines were generated by isolating first trimester placental villous cytotrophoblasts followed by culture in TSC medium to “reprogram” the cells to a proliferative state. TSCs grew as mononuclear colonies, whereas upon induction of syncytiotrophoblast (ST) differentiation multinuclear structures appeared, indicative of syncytium formation. Chorionic gonadotropin secretion was >4,000-fold higher in ST culture media compared to TSC media. Characteristic trophoblast hallmarks were defined in TSCs and ST including expression of C19MC miRNAs and macaque placental nonclassical MHC class I molecule, Mamu-AG. TSC differentiation to extravillous trophoblasts (EVTs) with or without the ALK-5 inhibitor A83-01 resulted in differing morphologies but similar expression of Mamu-AG and CD56 as assessed by flow cytometry, hence further refinement of relevant EVT markers is needed. Our preliminary characterization of macaque TSCs suggests that these cells represent a proliferative, self-renewing TSC population capable of differentiating to STs in vitro thereby establishing an experimental model of primate placentation.


Sign in / Sign up

Export Citation Format

Share Document