Renal complement deposition in a mouse model of Shiga toxin-producing E. coli infection

2013 ◽  
Vol 56 (3) ◽  
pp. 286
Author(s):  
J. Rebetz ◽  
Z. Békássy ◽  
D. Karpman
Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2804-2804
Author(s):  
Toshihiko Nishimura ◽  
John Morser ◽  
Zhifei Shao ◽  
Lawrence L. Leung

Abstract Hemolytic uremic syndrome (HUS) is characterized by a triad of microangiopathic hemolytic anemia, thrombocytopenia, and acute renal failure. The most common cause of HUS is Shiga toxin (STX)-producing E. coli, and eculizumab, a monoclonal antibody against complement C5, has shown clinical efficacy in some patients. Carboxypeptidase B2 (CPB2) is a metalloprotease activated by the thrombin/thrombomodulin complex that inactivates a number of inflammatory mediators, including complement C3a, and C5a by removing their C-terminal arginine. We hypothesized that in a murine model of STX-induced HUS, Cpb2-/- mice would have exacerbated disease compared to wild type (WT) mice due to excessive C3a and/or C5a in the absence of CPB2. A mouse model of STX-induced HUS was established by giving STX and LPS toxins intraperitoneally. Cpb2-/- mice had worse survival than WT (37% survival vs. 87% at 48h, p=0.0156). At 48h, severe thrombocytopenia developed in both WT and Cpb2-/- mice (WT: 0.096x106/μL; Cpb2-/-: 0.054x106/μL) compared to controls (1.2x106/μL; p>0.0001 vs. either WT or Cpb2-/-), with Cpb2-/- mice showing worse thrombocytopenia. Renal insufficiency was worse in Cpb2-/- mice than WT mice (BUN at 48h: 85 mg/dL vs. 37 mg/dL, p=0.0074; creatinine: 1.33 mg/dL vs. 0.23 mg/dL; p=0.0112, for Cpb2-/- and WT mice respectively, compared with normal baseline BUN and creatinine of 19 mg/dL and 0.1 mg/dL). Cpb2-/- mice developed worse anemia than WT (hemoglobin 9.8 g/dL vs. 12.4 g/dL, p=0.001 in Cpb2-/- vs. WT mice respectively). At 48h, liver function was worse in Cpb2-/- mice than WT mice, while plasma LDH was increased in Cpb2-/- mice more than WT mice. Using a standardized health score, the Cpb2-/- mice were worse than WT mice at all time points. Thus this model recapitulates STX-induced HUS with the Cpb2-/- mice having worse disease than WT. If the animals were treated with STX alone, there were no deaths in either genotype at 48h and only 37.5% mortality in Cpb2-/- mice by 60h compared with no deaths in WT mice. BUN, creatinine, liver enzymes and LDH were increased in both genotypes treated with STX alone compared to untreated mice, but there was no significant difference between the genotypes. Treatment with LPS alone caused thrombocytopenia in both WT and Cpb2-/- mice and LDH, BUN and creatinine levels were higher in Cpb2-/- mice than in WT mice, but there was no death at 48h and no drop in hemoglobin. Thus while either STX alone or LPS alone caused pathological conditions in the mice, the typical triad of HUS was only present when STX and LPS were given in combination. The Cpb2-/- mice had worse disease than WT mice consistent with our hypothesis on the role of CPB2 in inactivating C3a and/or C5a in STX-induced HUS. The potential efficacy of C3a and/or C5a blockade and anti-thrombotic agents will be tested in this model. Disclosures No relevant conflicts of interest to declare.


Metabolites ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 67
Author(s):  
Snehal R. Jadhav ◽  
Rohan M. Shah ◽  
Avinash V. Karpe ◽  
Robert S. Barlow ◽  
Kate E. McMillan ◽  
...  

Shiga toxigenic E. coli (STEC) are an important cause of foodborne disease globally with many outbreaks linked to the consumption of contaminated foods such as leafy greens. Existing methods for STEC detection and isolation are time-consuming. Rapid methods may assist in preventing contaminated products from reaching consumers. This proof-of-concept study aimed to determine if a metabolomics approach could be used to detect STEC contamination in spinach. Using untargeted metabolic profiling, the bacterial pellets and supernatants arising from bacterial and inoculated spinach enrichments were investigated for the presence of unique metabolites that enabled categorization of three E. coli risk groups. A total of 109 and 471 metabolite features were identified in bacterial and inoculated spinach enrichments, respectively. Supervised OPLS-DA analysis demonstrated clear discrimination between bacterial enrichments containing different risk groups. Further analysis of the spinach enrichments determined that pathogen risk groups 1 and 2 could be easily discriminated from the other groups, though some clustering of risk groups 1 and 2 was observed, likely representing their genomic similarity. Biomarker discovery identified metabolites that were significantly associated with risk groups and may be appropriate targets for potential biosensor development. This study has confirmed that metabolomics can be used to identify the presence of pathogenic E. coli likely to be implicated in human disease.


2008 ◽  
Vol 134 (4) ◽  
pp. A-714
Author(s):  
Antonio Serna ◽  
Chengru Zhu ◽  
Amelia J. Nugent ◽  
Erin K. Okeefe ◽  
Edgar Boedeker
Keyword(s):  

Author(s):  
Sebastian Loos ◽  
Jun Oh ◽  
Laura van de Loo ◽  
Markus J. Kemper ◽  
Martin Blohm ◽  
...  

Abstract Background Hemoconcentration has been identified as a risk factor for a complicated course in Shiga toxin-producing E. coli-hemolytic uremic syndrome (STEC-HUS). This single-center study assesses hemoconcentration and predictors at presentation in STEC-HUS treated from 2009–2017. Methods Data of 107 pediatric patients with STEC-HUS were analyzed retrospectively. Patients with mild HUS (mHUS, definition: max. serum creatinine < 1.5 mg/dL and no major neurological symptoms) were compared to patients with severe HUS (sHUS, definition: max. serum creatinine ≥ 1.5 mg/dL ± major neurological symptoms). Additionally, predictors of complicated HUS (dialysis ± major neurological symptoms) were analyzed. Results Sixteen of one hundred seven (15%) patients had mHUS. Admission of patients with sHUS occurred median 2 days earlier after the onset of symptoms than in patients with mHUS. On admission, patients with subsequent sHUS had significantly higher median hemoglobin (9.5 g/dL (3.6–15.7) vs. 8.5 g/dL (4.2–11.5), p = 0.016) than patients with mHUS. The product of hemoglobin (g/dL) and LDH (U/L) (cutoff value 13,302, sensitivity 78.0%, specificity of 87.5%) was a predictor of severe vs. mild HUS. Creatinine (AUC 0.86, 95% CI 0.79–0.93) and the previously published score hemoglobin (g/dL) + 2 × creatinine (mg/dL) showed a good prediction for development of complicated HUS (AUC 0.87, 95% CI 0.80–0.93). Conclusions At presentation, patients with subsequent severe STEC-HUS had a higher degree of hemoconcentration. This underlines that fluid loss or reduced fluid intake/administration may be a risk factor for severe HUS. The good predictive value of the score hemoglobin (g/dL) + 2 × creatinine (mg/dL) for complicated HUS could be validated in our cohort. Graphical abstract


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Elodie Gimier ◽  
Mélissa Chervy ◽  
Allison Agus ◽  
Adeline Sivignon ◽  
Elisabeth Billard ◽  
...  

2021 ◽  
Vol 14 (2) ◽  
pp. 78-90
Author(s):  
Ahmed Jarad ◽  
Kh. Al- Jeboori

The present study focus on non-O157 Shiga toxin-producing E. Coli (STEC), included a bacteriological study was subjected to provide additional information for non-O157 STEC prevalence in children and calves. Isolation by using selective culturing media (CHROMagar STEC and CHROMagar O157) from 127 children suffering from diarrhea and 133 calves in Al- Muthanna province. Characterization depends on culturing positive colony on MacConkey agar and Levin’s Eosin Methylene blue agar, staining single colony from the growth by gram stain, biochemical tests; Indole, the Methyl Red, Voges-Proskauer, Citrate test, Oxidase, Catalase, Urease, Motility, Kligler Iron and Api-20E, were done to confirm a diagnosis of non-O157 STEC, The reliable isolation as non-O157 STEC serotyping by specific latex agglutination test for the target non-O157 STEC (big six) serogroup (O26, O45, O103, O111, O121 and O145). The current study showed the prevalence of non-O157 STEC was 20 of out 127 (15.73%) in samples collected from children and 27 / 133 (20.30%) in calves samples in conclusion the Non-O157 STEC is an important cause of diarrhea in children, and calves; finally, the calves play an important reservoir for Non-O157 STEC.


2016 ◽  
Vol 5 (1) ◽  
Author(s):  
Selene Marozzi ◽  
Paola De Santis ◽  
Sarah Lovari ◽  
Roberto Condoleo ◽  
Stefano Bilei ◽  
...  

In recent years, the incidence of foodborne diseases caused by shiga toxin-producing <em>Escherichia coli</em> (STEC) has increased globally. For this reason, within the specific regional control plan for the detection of STEC in food products in Italy, the presence of STEC in unpasteurized milk cheeses was investigated. In total 203 samples obtained from March 2011 to December 2013 were analysed, with two standard methods (ISO 16654:2001 and ISO 13136:2012). Two strains of <em>E. coli</em> O157 were isolated (2/161, 1.2%) but did not carry any virulence-associated genes and 22 <em>stx</em>-positive samples (22/146, 15.1%) were detected in enrichment cultures, mostly from ovine cheeses. Only two strains isolated from different ovine cheeses carried <em>stx</em> gene and none of these was <em>eae</em>-positive. This study confirms the presence of <em>stx</em>-positive <em>E. coli</em> and suggests that this type of food cannot be excluded as a potential vehicle of STEC.


2018 ◽  
Vol 9 ◽  
Author(s):  
Rosely Martins Gioia-Di Chiacchio ◽  
Marcos Paulo Vieira Cunha ◽  
Lilian Rose Marques de Sá ◽  
Yamê Minieiro Davies ◽  
Camila Bueno Pacheco Pereira ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document