Exploring the effect of temperature on inhibition of Non-Structural Protease 3 of Chikungunya virus using Molecular dynamics simulations and Thermodynamics parameters

2021 ◽  
pp. 116164
Author(s):  
D. Kumar ◽  
M.K. Meena ◽  
K. Kumari ◽  
R.V. Kumar ◽  
I. Bahadur ◽  
...  
Soft Matter ◽  
2021 ◽  
Vol 17 (10) ◽  
pp. 2942-2956
Author(s):  
Rishabh D. Guha ◽  
Ogheneovo Idolor ◽  
Katherine Berkowitz ◽  
Melissa Pasquinelli ◽  
Landon R. Grace

We investigated the effect of temperature variation on the secondary bonding interactions between absorbed moisture and epoxies with different morphologies using molecular dynamics simulations.


2021 ◽  
Author(s):  
Soumya Lipsa Rath ◽  
Madhusmita Tripathy ◽  
Nabanita Mandal

Enveloped viruses, in general, have several transmembrane proteins and glycoproteins, which assist the virus in entry and attachment onto the host cells. These proteins also play a significant role in determining the shape and size of the newly formed virus particles. The lipid membrane and the embedded proteins affect each other in non-trivial ways during the course of the viral life cycle. Unravelling the nature of the protein-protein and protein-lipid interactions, under various environmental and physiological conditions, could therefore prove to be crucial in development of therapeutics. Here, we study the M protein of SARS-CoV-2 to understand the effect of temperature on the properties of the protein-membrane system. The membrane embedded dimeric M proteins were studied using atomistic and coarse-grained molecular dynamics simulations at temperatures ranging between 10 and 50 ˚C. While temperature induced fluctuations should be monotonic, we observe a steady rise in the protein dynamics up to 40 ˚C, beyond which it surprisingly reverts back to the low temperature behaviour. Detailed investigation reveals disordering of the membrane lipids in the presence of the protein, which induces additional curvature around the transmembrane region. Coarse-grained simulations indicate temperature dependent aggregation of M protein dimers. Our study clearly indicates that the dynamics of membrane lipids and integral M protein of SARS-CoV-2 enables it to better associate and aggregate only at a certain temperature range (i.e., ~30 to 40 ˚C). This can have important implications in the protein aggregation and subsequent viral budding/fission processes.   


2020 ◽  
Vol 978 ◽  
pp. 428-435
Author(s):  
Krishna Chaitanya Katakam ◽  
Natraj Yedla

The mechanical properties and deformation mechanism of nickel nanowire of dimension 100 Å (x-axis) × 1000 Å (y-axis) × 100 Å (z-axis) containing a single linear surface defect is studied at different temperatures using molecular dynamics simulations. The defect is created by deleting a row of atoms on the surface and is inclined at 25° to the loading axis. The tensile test is carried out at 0.01 K, 10 K, 100 K and 300 K temperature and 108 s-1strain rate. To determine the effect of temperature on the stress-strain curves, fracture and failure mechanism, a thorough investigation has taken place. Maximum strength of 21.26 GPa is observed for NW deformed at 0.01 K temperature and the strength decreased with increase in temperature. Through slip lines, the deformation relief pattern taken place by developing the extrusion areas along with intrusion over the surface defect area in all NWs deformed at respective temperatures. Further it is observed that fracture strains decrease with increase in temperature. After yielding, stacking faults associated with dislocations are generated by slip on all four {111} planes. Different type of dislocations with both intrinsic and extrinsic stacking faults are noticed. Out of all dislocation densities, Shockley partial dislocation densities has recorded a maximum value.


2021 ◽  
Vol 10 (1) ◽  
pp. 87-98
Author(s):  
Jiarui Zhang ◽  
Fan Yang ◽  
Yaping Liu ◽  
Zheng Zhong ◽  
Jinfeng Zhao

Abstract In this paper, the mechanical behavior of gradient nano-grained copper under uniaxial deformation was investigated using molecular dynamics simulations. The stress response was found to be different in the regions with different grain sizes, which was attributed to the different dislocation activities due to the dislocation-grain boundary synergies. The phenomenon of grain rotation was observed and a program was developed to accurately evaluate the grain rotation and explore its dependence on the grain size and the initial crystal orientation. It is found that all grains tend to rotate to the 30° orientation, consistent with the activation theory of the slip systems under the uniaxial deformation. The rotation magnitude is larger for larger grains, but the rotation rate is more diversely distributed for smaller grains, indicating more disturbance from grain boundary mechanisms such as the grain boundary sliding and the grain boundary diffusion for smaller grains. The effect of temperature on the grain rotation is also investigated, showing an increase of the dispersion of grain rotation distribution with the increase of temperature. This paper aims at providing insights into the synergistic deformation mechanisms from dislocations and grain boundaries accounting for the exceptional ductility of the gradient nano-grained metals.


Sign in / Sign up

Export Citation Format

Share Document