scholarly journals Improving the tribological performance of a biodegradable lubricant adding graphene nanoplatelets as additives

2021 ◽  
pp. 117797
Author(s):  
José M. Liñeira del Río ◽  
María J.G. Guimarey ◽  
Jose I. Prado ◽  
Luis Lugo ◽  
Enriqueta R. López ◽  
...  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Omar Hussain ◽  
Shahid Saleem Sheikh ◽  
Babar Ahmad

Purpose This study aims to fabricate and investigate the tribological performance of ultra-high molecular weight polyethylene (UHMWPE)-based composite materials reinforced with 0.5, 1 and 2 weight percentage of graphene nanoplatelets (GNPs) while keeping the weight percentage of vitamin C constant at 2% for each composite. Design/methodology/approach In this paper, the composites were fabricated using hot pressing, and the dispersion of GNP/vitamin C/UHMWPE hybrid composite was investigated by X-ray diffraction. Experimental trials were performed according to ASTM F732 on a reciprocating sliding tribometer (pin-on-disc) at human body temperature of 37 ± 1 °C, for a load of 52 N, to assess the role of these fillers on the tribological properties of UHMWPE against Ti6Al4V counter body material under dry and lubricating (human serum) environment. Findings In this study, it has been observed that friction and wear behavior of the developed composites improve with increase in weight percentage of GNP, and human serum adheres to the surface of the composite pins upon sliding, resulting in the formation of a film, which results in better wear resistance of the composite pins under human serum lubrication than dry sliding. Scanning electron microscope was used to investigate the worn surface morphological examination of the composite materials. Specific wear rate of 0.76 × 10−7 mm3/Nm was attained for 2 Wt.% GNP-filled composite under human serum lubrication. Practical implications The results indicate the compatibility of the composite material used in this study and suggested the in vitro implant application. Originality/value The presented work includes novel study of synergistic effect of GNP (which acts as a solid lubricant) and vitamin C (added as an antioxidant) on the tribological performance of UHMWPE under dry and human serum lubrication.


Author(s):  
Yuchun Huang ◽  
Xiaoliang Shi ◽  
Kang Yang ◽  
Xiyao Liu ◽  
Zhihai Wang

In order to analyze the effects of frictional heat on the tribological performance of Ni3Al matrix self-lubricating composite containing 6.2 vol.% graphene nanoplatelets (NB), the dry sliding friction tests of Ni3Al-based alloy and NB against GCr15 steel ball are undertaken under different loads from 3 to 18 N. The effects of different amount of frictional heat on the friction and wear mechanism of NB are also studied. The results show that tribological performance of NB is better than that of Ni3Al-based alloy under same working conditions. The addition of graphene nanoplatelets promotes the formation of stable glaze layer on worn surface. In addition, graphene nanoplatelets enhance the thermal conductivity of NB, which makes the surface temperature of wear scar of NB in a proper range (about 413 ℃) at 13 N and avoids the serious friction and wear caused by the accumulation of frictional heat. At 13 N, NB shows the lower friction coefficient (0.32) and wear rate (3.6 × 10−5 mm3·N−1·m−1). It is attributed to the appropriate local temperature (about 413 ℃) of worn surface, resulting in the formation of stable glaze layer with good friction reducing and wear resistance on worn surface. This study was meaningful for optimizing applied loads to realize the appropriate frictional heat and good tribological behavior of NB.


2016 ◽  
Vol 112 ◽  
pp. 449-455 ◽  
Author(s):  
Alberto Gómez-Gómez ◽  
Andrés Nistal ◽  
Eugenio García ◽  
M. Isabel Osendi ◽  
Manuel Belmonte ◽  
...  

2016 ◽  
Vol 97 ◽  
pp. 478-489 ◽  
Author(s):  
Pedro Bandeira ◽  
Judith Monteiro ◽  
António Monteiro Baptista ◽  
Fernão D. Magalhães

Sign in / Sign up

Export Citation Format

Share Document