Fabrication and tribological behavior of novel UHMWPE/vitamin-C/graphene nanoplatelets based hybrid composite for joint replacement

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Omar Hussain ◽  
Shahid Saleem Sheikh ◽  
Babar Ahmad

Purpose This study aims to fabricate and investigate the tribological performance of ultra-high molecular weight polyethylene (UHMWPE)-based composite materials reinforced with 0.5, 1 and 2 weight percentage of graphene nanoplatelets (GNPs) while keeping the weight percentage of vitamin C constant at 2% for each composite. Design/methodology/approach In this paper, the composites were fabricated using hot pressing, and the dispersion of GNP/vitamin C/UHMWPE hybrid composite was investigated by X-ray diffraction. Experimental trials were performed according to ASTM F732 on a reciprocating sliding tribometer (pin-on-disc) at human body temperature of 37 ± 1 °C, for a load of 52 N, to assess the role of these fillers on the tribological properties of UHMWPE against Ti6Al4V counter body material under dry and lubricating (human serum) environment. Findings In this study, it has been observed that friction and wear behavior of the developed composites improve with increase in weight percentage of GNP, and human serum adheres to the surface of the composite pins upon sliding, resulting in the formation of a film, which results in better wear resistance of the composite pins under human serum lubrication than dry sliding. Scanning electron microscope was used to investigate the worn surface morphological examination of the composite materials. Specific wear rate of 0.76 × 10−7 mm3/Nm was attained for 2 Wt.% GNP-filled composite under human serum lubrication. Practical implications The results indicate the compatibility of the composite material used in this study and suggested the in vitro implant application. Originality/value The presented work includes novel study of synergistic effect of GNP (which acts as a solid lubricant) and vitamin C (added as an antioxidant) on the tribological performance of UHMWPE under dry and human serum lubrication.

2018 ◽  
Vol 70 (6) ◽  
pp. 1066-1071 ◽  
Author(s):  
Saravanan C. ◽  
Subramanian K. ◽  
Anandakrishnan V. ◽  
Sathish S.

Purpose Aluminium is the most preferred material in engineering structural components because of its excellent properties. Furthermore, the properties of aluminium may be enhanced through metal matrix composites and an in-depth investigation on the evolved properties is needed in view of metallurgical, mechanical and tribological aspects. The purpose of this study is to explore the effect of TiC addition on the tribological behavior of aluminium composites. Design/methodology/approach Aluminium metal matrix composites at different weight percentage of titanium carbide were produced through powder metallurgy. Produced composites were subjected to sliding wear test under dry condition through Taguchi’s L9 orthogonal design. Findings Optimal process condition to achieve the minimum wear rate was identified though the main effect plot. Sliding velocity was identified as the most dominating factor in the wear resistance. Practical implications The production of components with improved properties is promoted efficiently and economically by synthesizing the composite via powder metallurgy. Originality/value Though the investigations on the wear behavior of aluminium composites are analyzed, reinforcement types and the mode of fabrication have their significance in the metallurgical and mechanical properties. Thus, the produced component needs an in-detail study on the property evolution.


2015 ◽  
Vol 58 (3) ◽  
pp. 481-489 ◽  
Author(s):  
B. M. Girish ◽  
B. M. Satish ◽  
Sadanand Sarapure ◽  
D. R. Somashekar ◽  
Basawaraj

2021 ◽  
Vol 29 (9_suppl) ◽  
pp. S1424-S1431
Author(s):  
Omar Hussain ◽  
Babar Ahmad ◽  
Shahid Saleem Sheikh

Ultra high molecular weight polyethylene (UHMWPE) is widely used for articulating surfaces in total hip and knee replacements. In the present work, the tribological properties of UHMWPE-based nano composites were studied in order to meet the demands of current bearing applications. UHMWPE matrix reinforced with 0.5, 1, and 2 weight percentage of alumina nano powder were fabricated by hot pressing. The dispersion and microstructure of composite material was established by X-ray diffraction (XRD) and scanning electron microscope (SEM) micrograph. The tests were carried out on a reciprocating sliding pin-on-disc tribometer at human body temperature (37±1°C) under dry and human serum lubricating environments for a normal load of 46 N and 52 N, a constant sliding speed of 4 mm. Under these testing conditions, it has been observed that the wear behavior of the developed composites improved with increase in weight percentage of alumina nano powder. The results show that at 52 N load, the maximum value of wear rate was 7.9x10−7 mm3/Nm and the minimum value 1.6x10−7 mm3/Nm was obtained. SEM was used to examine the worn surface and it was observed that human serum adheres to the surface of the composite pins upon sliding, resulting in the formation of a film which results in better wear resistance of the composite pins under human serum lubrication than dry sliding. This study implies that the use of nano alumina power will reduce the wear of UHMWPE based composite under human serum lubrication.


2018 ◽  
Vol 14 (3) ◽  
pp. 589-608 ◽  
Author(s):  
Rakesh Potluri

PurposeThe purpose of this paper is to study the effect of the addition of silicon carbide (SiC) microparticles and their contributions regarding the tensile and shear properties of the T800 fiber reinforced polymer composite at various fiber volume fractions. The tensile and shear properties of the hybrid composites where continuous T800 fibers are used as reinforcements in an epoxy matrix embedded with SiC microparticles have been studied.Design/methodology/approachThe results were obtained by implementing a micromechanics approach assuming a uniform distribution of reinforcements and considering one unit cell from the whole array. Using the two-step homogenization process, the properties of the materials were determined by using the finite element analysis (FEA). The predicted elastic properties from FEA were compared with the analytical results. The analytical models were implemented in the MATLAB Software. The FEA was performed in ANSYS APDL.FindingsThe mechanical properties of the hybrid composite had increased when compared with the properties of the conventional FRP. The results suggest that SiC particles are a good reinforcement for enhancing the transverse and shear properties of the considered fiber reinforced epoxy composite. The microparticle embedment has significant effect on the transverse tensile properties as well as in-plane and out-of-plane shear properties.Research limitations/implicationsThis is significant because improving the properties of the composite materials using different methods is of high interest in the materials community. Using this study people can work on the process of including different type of microparticles in to their composite designs and improve their performance characteristics. The major influence of the particles can be seen only at lower volume fractions of the fiber in the composite. Only FEA and analytical methods were used for the study.Practical implicationsMaterial property improvements lead to more advanced designs for aerospace and defense structures, which allow for high performance under unpredictable conditions.Originality/valueThis type of study proves that the embedment of different microparticles is a method that can be used for improving the properties of the composite materials. The improvement of the transverse and shear properties will be useful especially in the design of shell structures in the different engineering applications.


2014 ◽  
Vol 66 (4) ◽  
pp. 545-554 ◽  
Author(s):  
C. Velmurugan ◽  
R. Subramanian ◽  
S.S. Ramakrishnan ◽  
S. Thirugnanam ◽  
T. Kannan ◽  
...  

Purpose – The purpose of this paper is to investigate the influence of most predominant heat-treatment parameters on the wear behavior of Al6061 hybrid composite reinforced with 10 weight per cent SiC and 2 weight per cent graphite particles. Design/methodology/approach – The aluminum hybrid composite was produced using stir casting process. Wear testing of heat-treated samples was carried out using a pin-on-disc apparatus. Experiments were conducted by applying design of experiments (DOE) technique. The experimental values were used for formulation of a mathematical model. The wear surfaces of composite specimens were analyzed using scanning electron microscope (SEM). Findings – The volume loss of heat-treated composite initially decreased with increasing aging duration. This was followed by the attainment of a minimum and then a reversal in the trend at longer aging times. SEM micrographs of the wear surfaces of the composite show that the wear mechanisms were abrasion, delamination and adhesion. Originality/value – In this paper, the hybrid composite was produced using stir casting route, and its wear properties after heat treatment were tested using pin-on-disc apparatus. It was found that heat treatment had a profound effect on the wear behaviour of the developed composite.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 129576-129585
Author(s):  
In-Gon Lee ◽  
Won-Seok Oh ◽  
Yoon Jae Kim ◽  
Ic-Pyo Hong

Sign in / Sign up

Export Citation Format

Share Document