Environment friendly synthesis copper oxide nanoparticles and its antioxidant, antibacterial activities using Seaweed (Sargassum longifolium) extract

2021 ◽  
pp. 130724
Author(s):  
S. Rajeshkumar ◽  
N.T. Nandhini ◽  
K. Manjunath ◽  
P. Sivaperumal ◽  
G. Krishna Prasad ◽  
...  
2017 ◽  
Vol 33 (8) ◽  
pp. 889-896 ◽  
Author(s):  
Abdullah A. Alswat ◽  
Mansor Bin Ahmad ◽  
Mohd Zobir Hussein ◽  
Nor Azowa Ibrahim ◽  
Tawfik A. Saleh

2020 ◽  
Author(s):  
Richard B Asamoah ◽  
Abu Yaya ◽  
Bismark Mensah ◽  
Pascal Nbelayim ◽  
Vitus Apalangya ◽  
...  

Inorganic nano-metal oxides can be effective alternatives to drug resistant organic antibiotics due to their broad spectrum antimicrobial activity against pathogenic and mutagenic gram-negative and positive bacteria.  In this study, zinc and copper oxides (ZnO and CuO) were synthesized using a facile wet chemical method. The oxide nanoparticles were characterized using X-ray diffraction (XRD), UV-Vis spectrometer (UV-Vis), Fourier Transformed Infra-red spectrometer and Transmission electron microscopy (TEM). The antibacterial activities of the nanoparticles were investigated against e. coli and s. aureus using the disk diffusion and microdilution tests. The XRD analysis revealed that both zinc and copper oxide nanoparticles were purely crystalline. The TEM micrographs showed that copper oxide nanoparticles assumed a nanorod shape of average length of 100 nm.  Whiles zinc oxide nanoparticles were spherical of average diameter of 15 nm. The FTIR results showed that the nanoparticles were free of impurities and organic surfactants. The optical band gaps of CuO and ZnO according to UV-Vis analysis were respectively 2.63 eV and 3.22 eV. According to the antibacteria tests, the minimum inhibition concentration (MIC) of CuO against e. coli and s. aureus were correspondingly 1mg/ml and 0.25 mg/ml whiles it was 0.1mg/ml for ZnO against s. aureus but ZnO produced no inhibition against e. coli. With the microdilution test, both nanoparticles exhibited activity against both bacteria species at all varying concentrations. CuO had an antibacteria efficiency of 80 to 97% and 85 to 99% for e. coli and s. aureus respectively. The efficiency of ZnO were 20 to 90% and 50 to 89% for e. coli and s. aureus accordingly. The results concluded that CuO had higher antibacteria activity as compared to ZnO.


2020 ◽  
Vol 10 (03) ◽  
pp. 378-382
Author(s):  
Jenan Hussien Taha ◽  
Nada Khudair Abbas ◽  
Azhar A. F. Al-Attraqchi

In this article, a simple new technique for the green synthesis of copper oxide nanoparticles (CuO NPs) using peroxidases oxidoreductases (POX) enzyme extracted from fig leaves for antifungal and antibacterial activities has been reported. Subsequently, a comprehensive investigation of the structural, optical, and morphological properties of the synthesized CuO NPs was elucidated, using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Electrodiagnostic (EDX), atomic force microscopy (AFM), and transmission electron microscopy (TEM) analysis techniques. Specifically, the resultant nanoparticles are spherical with a diameter ranging from 28–68. CuO NPs were further tested for their antifungal activity against Candida and Aspergillus species, while the antibacterial activity was screened in contradiction of pathogenic bacterial strains namely gram-positive Staphylococcus aureus and gram-negative Asinobacterial species. The present study reveals a convenient use of POX fig leaves extract as fuel, for the well-organized synthesis of CuO NPs via green synthesis technique to acquire considerably active antifungal and antibacterial materials.


2019 ◽  
Vol 19 (3) ◽  
pp. 626 ◽  
Author(s):  
Madiha Batool ◽  
Muhammad Zahid Qureshi ◽  
Farwa Hashmi ◽  
Nida Mehboob ◽  
Abdul Salam Shah

Nanotechnology is generating interest of researchers toward cost-free and environment-friendly biosynthesis of nanoparticles. In this research, biosynthesis of stable copper nanoparticles has been done by using aloe vera leaves extract which has been prepared in de-ionized water. The aim of this study is the tracing of an object by green synthesis of copper oxide nanoparticles with the interaction of leaves extract and copper salt and its dye removal efficiency. The results have confirmed the efficient removal of Congo red (CR) dye using copper oxide nanoparticles. Furthermore, we have examined the effect of variables like concentration, time, pH, and adsorbent dosage. We have observed maximum 1.1 mg/g dye removal at 10 min time interval, pH 2, and 5 mg/g nanoparticles. The shape of the copper nanoparticles was spherical, and their range of grain was 80–120 nm. The EDX of synthesized nanoparticles showed copper 38% and 65% oxygen. UV spectrophotometer analysis confirms peak of the copper nanoparticles between 200–600 nm.


Author(s):  
Haider Qassim Raheem ◽  
Takwa S. Al-meamar ◽  
Anas M. Almamoori

Fifty specimens were collected from wound patients who visited Al-Hilla Teaching Hospital. The samples were grown on Blood and MacConkey agar for 24-48 hr at 37oC. The bacterial isolates which achieved as a pure and predominant growth from clinical samples as Pseudomonas fluorescens, were identified using morphological properties and Vitek2 system. The anti-bacterial activity of copper oxide nanoparticles (CuO NPs) against was tested by (disk diffusion assay) using dilutions of (400, 200, 100, 50, 25, and 12.5‎µ‎g/ml). The (MIC and MBC) of each isolate was determined. CuO NPs shows wide spectrum antibacterial activity against tested bacteria with rise zone of inhibition diameter that is proportionate with the increase in nanoparticle concentration. The MIC of CuO NPs extended from 100-200‎µ‎g/ml and the MBC ranged from 200-400‎µ‎g/ml. The antibiotic profile was determined by Viteck 2 compact system (Biomérieux). CuO NPs‎ found highly effective and safe in P. fluorescens wounds infections comparing with used antibiotics.


2020 ◽  
Vol 3 (3) ◽  
Author(s):  
Hemalatha D ◽  
Saraswath S

In material science, green method for synthesis of nanomaterials is feasible, cheaper and eco-friendly protocol. To accomplish this phenomenon, present study was aimed to synthesize Copper oxide nanoparticles using leaf extract of Aloevera with two different precursors CuCl2.2H2O (Cupric chloride) and CuSo4.5H2O (Cupric sulfate). The extraction of Aloevera is employed as reducing and stabilizing agent for this synthesis.Copper oxide Nanoparticles is effective use of biomedical application due to their antibacterial function. The synthesized Copper oxide nanoparticles were characterized by X-Ray Diffraction Spectroscopy (XRD), Energy Dispersive Spectroscopy (EDX), FourierTransform Infrared Spectroscopy (FT- IR) and Scanning Electron Microscope(SEM). XRD studies reveal the crystallographic nature of Copper oxide nanoparticles. Furthermore the Copper oxide nanoparticles have good Antibacterial activity against both gram negative (E.Coli, Klebsiella pneumonia) and gram positive (Bacillus cereus, Staphylococcus aureus)bacteria.


Sign in / Sign up

Export Citation Format

Share Document