Synthesis, molecular docking and some metabolic enzyme inhibition properties of biphenyl-substituted chalcone derivatives

2022 ◽  
pp. 132358
Author(s):  
Serdar Burmaoglu ◽  
Elif Akin Kazancioglu ◽  
Mustafa Z. Kazancioglu ◽  
Rüya Sağlamtaş ◽  
Gozde Yalcin ◽  
...  
Author(s):  
Feyzi S. Tokalı ◽  
Parham Taslimi ◽  
İbrahim H. Demircioğlu ◽  
Muhammet Karaman ◽  
Mehmet S. Gültekin ◽  
...  

2020 ◽  
Vol 26 (8) ◽  
pp. 802-814 ◽  
Author(s):  
Nemanja Turkovic ◽  
Branka Ivkovic ◽  
Jelena Kotur-Stevuljevic ◽  
Milica Tasic ◽  
Bojan Marković ◽  
...  

Background: Since the beginning of the HIV/AIDS epidemic, 75 million people have been infected with the HIV and about 32 million people have died of AIDS. Investigation of the molecular mechanisms critical to the HIV replication cycle led to the identification of potential drug targets for AIDS therapy. One of the most important discoveries is HIV-1 protease, an enzyme that plays an essential role in the replication cycle of HIV. Objective: The aim of the present study is to synthesize and investigate anti-HIV-1 protease activity of some chalcone derivatives with the hope of discovering new lead structure devoid drug resistance. Methods: 20 structurally similar chalcone derivatives were synthesized and their physico-chemical characterization was performed. Binding of chalcones to HIV-1 protease was investigated by fluorimetric assay. Molecular docking studies were conducted to understand the interactions. Results: The obtained results revealed that all compounds showed anti-HIV-1 protease activity. Compound C1 showed the highest inhibitory activity with an IC50 value of 0.001 μM, which is comparable with commercial product Darunavir. Conclusion: It is difficult to provide general principles of inhibitor design. Structural properties of the compounds are not the only consideration; ease of chemical synthesis, low molecular weight, bioavailability, and stability are also of crucial importance. Compared to commercial products the main advantage of compound C1 is the ease of chemical synthesis and low molecular weight. Furthermore, compound C1 has a structure that is different to peptidomimetics, which could contribute to its stability and bioavailability.


2021 ◽  
Vol 36 (1) ◽  
pp. 618-626 ◽  
Author(s):  
Fatema R. Saber ◽  
Rehab M. Ashour ◽  
Ali M. El-Halawany ◽  
Mohamad Fawzi Mahomoodally ◽  
Gunes Ak ◽  
...  

Author(s):  
Akshada Joshi ◽  
Heena Bhojwani ◽  
Ojas Wagal ◽  
Khushboo Begwani ◽  
Urmila Joshi ◽  
...  

Background: EGFR (Epidermal Growth Factor Receptor) and CDK2 (Cyclin Dependent Kinase 2) are important targets in the treatment of many solid tumors and different ligands of these receptors share many common structural features. Objective: The study involved synthesis of benzamide-substituted chalcones and determination of their antiproliferative activity as well as preliminary evaluation of EGFR and CDK2 inhibitory potential using both receptor binding and computational methods. Methods: We synthesized 13 benzamide-substituted chalcone derivatives and tested their antiproliferative activity against MCF-7, HT-29 and U373MG cell-lines using Sulforhodamine B Assay. Four compounds were examined for activity against EGFR and CDK2 kinase. The compounds were docked into both EGFR and CDK2 using Glide software. The stability of the interactions for most active compound was evaluated by Molecular Dynamics Simulation using Desmond software. Molecular Docking studies on mutant EGFR (T790M, T790M/L858R, and T790M/C797S) were also carried out. Results: From the SRB assay, we concluded that compounds 1g, and 1k were effective in inhibiting the growth of MCF-7 cell line whereas the other compounds were moderately active. Most compounds were either moderately active or inactive on U373 MG and HT-29 cell line. Compounds 1g and 1k showed good inhibitory activity against CDK2 kinase while 1d and 1f were moderately active. Compounds 1d, 1f, 1g, and 1k were moderately active against EGFR kinase. Molecular docking reveals involvement of one hydrogen bond with Met793 in binding with EGFR however; it was not stable during simulation and these compounds bind to the receptor mainly via hydrophobic contacts. This fact also points towards a different orientation of the inhibitor within the active site of EGFR kinase. Binding mode analysis for CDK2 inhibition studies indicate that hydrogen bonding interaction with Lys 33 and Leu83 are important for the activity. These interactions were found to be stable throughout the simulation. Considering the results for wild-type EGFR inhibition, the docking studies on mutants were performed and which indicate that the compounds bind to the mutant EGFR but the amino acid residues involved are similar to the wild-type EGFR and therefore, the selectivity seems to be limited. Conclusion: These benzamide-substituted chalcone derivatives will be useful as lead molecules for the further development of newer inhibitors of EGFR and/or CDK2 kinases.


2015 ◽  
Vol 13 (14) ◽  
pp. 4344-4350 ◽  
Author(s):  
Devendar Reddy Kommidi ◽  
Ramakanth Pagadala ◽  
Surjyakanta Rana ◽  
Parvesh Singh ◽  
Suhas A. Shintre ◽  
...  

One-pot efficient synthetic protocol is described for the synthesis of carbapenem chalcone derivatives using AAPTMS@MCM-41 heterogeneous catalyst.


2019 ◽  
Vol 91 ◽  
pp. 103138 ◽  
Author(s):  
Mubashir Hassan ◽  
Muhammad Athar Abbasi ◽  
Aziz-ur-Rehman ◽  
Sabahat Zahra Siddiqui ◽  
Saba Shahzadi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document