Fat unsaturation measures in tibial, subcutaneous and breast adipose tissue using short and long TE MRS at 3 T

Author(s):  
C.J. Fallone ◽  
A.G. Tessier ◽  
A. Yahya
2020 ◽  
Vol 23 (3) ◽  
pp. 233 ◽  
Author(s):  
Sara Socorro Faria ◽  
Luís Henrique Corrêa ◽  
Gabriella Simões Heyn ◽  
Lívia Pimentel de Sant'Ana ◽  
Raquel das Neves Almeida ◽  
...  

Nutrients ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3832
Author(s):  
Caroline Goupille ◽  
Philippe G. Frank ◽  
Flavie Arbion ◽  
Marie-Lise Jourdan ◽  
Cyrille Guimaraes ◽  
...  

In the present study, we investigated various biochemical, clinical, and histological factors associated with bone metastases in a large cohort of pre- and postmenopausal women with breast cancer. Two hundred and sixty-one consecutive women with breast cancer were included in this study. Breast adipose tissue specimens were collected during surgery. After having established the fatty acid profile of breast adipose tissue by gas chromatography, we determined whether there were differences associated with the occurrence of bone metastases in these patients. Regarding the clinical and histological criteria, a majority of the patients with bone metastases (around 70%) had tumors with a luminal phenotype and 59% of them showed axillary lymph node involvement. Moreover, we found a negative association between the levels of n-3 long-chain polyunsaturated fatty acids (LC-PUFA) in breast adipose tissue and the development of bone metastases in premenopausal women. No significant association was observed in postmenopausal women. In addition to a luminal phenotype and axillary lymph node involvement, low levels of n-3 LC-PUFA in breast adipose tissue may constitute a risk factor that contributes to breast cancer bone metastases formation in premenopausal women.


Cancers ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1063 ◽  
Author(s):  
Kaoutar Ennour-Idrissi ◽  
Pierre Ayotte ◽  
Caroline Diorio

Persistent organic pollutants (POPs) bioaccumulate in the food chain and have been detected in human blood and adipose tissue. Experimental studies demonstrated that POPs can cause and promote growth of breast cancer. However, inconsistent results from epidemiological studies do not support a causal relationship between POPs and breast cancer in women. To identify individual POPs that are repeatedly found to be associated with both breast cancer incidence and progression, and to demystify the observed inconsistencies between epidemiological studies, we conducted a systematic review of 95 studies retrieved from three main electronic databases. While no clear pattern of associations between blood POPs and breast cancer incidence could be drawn, POPs measured in breast adipose tissue were more clearly associated with higher breast cancer incidence. POPs were more consistently associated with worse breast cancer prognosis whether measured in blood or breast adipose tissue. In contrast, POPs measured in adipose tissue other than breast were inversely associated with both breast cancer incidence and prognosis. Differences in biological tissues used for POPs measurement and methodological biases explain the discrepancies between studies results. Some individual compounds associated with both breast cancer incidence and progression, deserve further investigation.


Adipocyte ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 313-325
Author(s):  
Frank L. Lombardi ◽  
Naser Jafari ◽  
Kimberly A. Bertrand ◽  
Lauren J. Oshry ◽  
Michael R. Cassidy ◽  
...  

2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Alberto Benito-Martin ◽  
Paul Paik ◽  
Malik Mushannen ◽  
Priya Bhardwaj ◽  
Sonya Oshchepkova ◽  
...  

Abstract Background and Objectives: Breast cancer is among the most common cancer in women with 2.1 million new cases detected each year. Numerous studies have demonstrated a connection between body mass index (BMI) and cancer incidence, with obesity (BMI ≥ 30) being responsible for the development of at least 13 types of cancer, and 15% to 20% of total cancer-related mortality. The effects of extracellular vesicles (EVs) derived from the obese adipose tissue microenvironment on breast cancer have not yet been clearly elucidated. Methods: EVs were obtained from media conditioned with human breast adipose tissue from reduction mammoplasty (n=31). Women were healthy at the time of surgery and had no history of breast cancer. Patient samples were stratified based on their body mass index (BMI), with a BMI < 25 considered healthy and a BMI ≥ 25 considered overweight/obese. Breast adipose tissue-derived EVs (AT-EVs) were characterized (Quantitative Mass Spectrometry) and used to treat human breast cancer cell lines, including the ER+ MCF7 and triple negative breast cancer (TNBC) MDA-MB-231. Effects on cell proliferation and migration in vitro, and on tumor growth in a mouse xenograft model, were examined after long-term education with EVs. RNA sequencing was performed to investigate potential reprogramming induced by AT-EVs. Results: We found a positive correlation between protein amount per AT-EV and BMI. Quantitative proteomics of AT-EVs revealed 46 proteins that were significantly higher and 54 proteins that were significantly lower in specimens from women with a BMI ≥ 25 compared to women with a BMI < 25. AT-EVs from patients with a BMI ≥ 25 induced proliferation of MCF7 cells compared to AT-EVs from patients with a BMI < 25. Obese EVs induced a more aggressive phenotype in MDA-MB-231 cells, increasing their invasiveness in vitro. Obese EVs also increased the growth of MCF7 and MDA-MB-231 cells in vivo. Ingenuity pathway analysis of RNA-Seq data identified significant differences in mTOR signaling and canonical pathways associated with altered mitochondrial function. Conclusion: Our studies identify a novel mechanism to explain the obesity-breast cancer link in older women. Namely, that in obesity, the breast microenvironment produces EVs capable of reprogramming breast cancer cells to grow faster and be more aggressive. Identifying which cargo in breast AT-EV mediates these effects may provide new targets for intervention.


1996 ◽  
Vol 7 (6) ◽  
pp. 591-595 ◽  
Author(s):  
Zhenrong Zhu ◽  
Markku Parviainen ◽  
Satu M�nnist� ◽  
Pirjo Pietinen ◽  
Matti Eskelinen ◽  
...  

1982 ◽  
Vol 206 (1) ◽  
pp. 19-25 ◽  
Author(s):  
Marie Luise Rao ◽  
Govind S. Rao

1. Binding of l-tri-[125I]iodothyronine to the cytosol fraction of normal human female breast adipose tissue was investigated by the charcoal adsorption method. Equilibrium of binding was reached after 120s at 25°C. 2. The l-tri-[125I]iodothyronine-binding component is a protein; this was confirmed by experiments in which binding was totally lost after heating the cytosol fraction for 10min at 100°C and in which binding was diminished after treatment with proteolytic enzymes and with thiol-group-blocking reagents. The binding protein was stable at −38°C for several months. 3. It displayed saturability, high affinity (apparent Kd 3.28nm) and a single class of binding sites. 4. High specificity for l-tri-iodothyronine and l-3,5-di-iodo-3′-isopropylthyronine was observed, whereas other iodothyronines were less effective in displacing l-tri-[125I]-iodothyronine from its binding site. 5. The binding of the hormone by the cytosol fraction did not show a pH optimum. 6. When cytosol fractions of adipose tissue from different females were subjected to radioimmunoassay for the determination of thyroxine-binding globulin a value of 0.304±0.11μg/mg of cytosol protein (mean±s.d., n=4) was obtained; the mean concentration in plasma was 0.309±0.07μg/mg of plasma protein (mean±s.d., n=3). 7. The Ka value of 6.3×108m−1 of l-tri-[125I]iodothyronine for binding to plasma, the similar thermalinactivation profiles of binding and the reactivity to thiol-group-blocking reagents were some properties common between the binding components from the cytosol fraction and plasma. 8. These results suggest that the cytosol fraction of human female breast adipose tissue contains thyroxine-binding globulin; the protein that binds l-tri-[125I]iodothyronine with high affinity and specificity appears to be similar to thyroxine-binding globulin.


Sign in / Sign up

Export Citation Format

Share Document