Austenite stability and its effect on the toughness of a high strength ultra-low carbon medium manganese steel plate

2016 ◽  
Vol 675 ◽  
pp. 153-163 ◽  
Author(s):  
Y. Zou ◽  
Y.B. Xu ◽  
Z.P. Hu ◽  
X.L. Gu ◽  
F. Peng ◽  
...  
2019 ◽  
Vol 44 (60) ◽  
pp. 32292-32306 ◽  
Author(s):  
Yu Du ◽  
Xiuhua Gao ◽  
Liangyun Lan ◽  
Xiangyu Qi ◽  
Hongyan Wu ◽  
...  

Alloy Digest ◽  
1990 ◽  
Vol 39 (4) ◽  

Abstract ASTM A710 is a low-carbon, precipitation hardening high-strength alloy steel plate. It is well suited to critical applications. This datasheet provides information on composition and tensile properties as well as fracture toughness. It also includes information on heat treating and joining. Filing Code: SA-446. Producer or source: Bethlehem Steel Corporation.


Alloy Digest ◽  
1986 ◽  
Vol 35 (8) ◽  

Abstract BethStar 60 steel plate is a high-strength product with a 60,000 psi minimum yield strength. It contains low carbon and low sulfur and has outstanding toughness, weldability and formability. It provides the design engineer with a an economical high-strength low-alloy (HSLA) grade that can be fabricated readily. Applications include weight-sensitive components subject to high stress such as frames for large off-highway haulers. This datasheet provides information on composition, physical properties, microstructure, elasticity, and tensile properties as well as fracture toughness. It also includes information on forming, heat treating, and joining. Filing Code: SA-421. Producer or source: Bethlehem Steel Corporation.


2021 ◽  
Vol 1035 ◽  
pp. 404-409
Author(s):  
Zhe Rui Zhang ◽  
Ren Bo Song ◽  
Nai Peng Zhou ◽  
Wei Feng Huo

In this study, a new Fe-6Mn-4Al-0.4C high strength medium manganese hot rolled steel sheet was designed. The influence mechanism of the intercritical annealing (IA) temperature on microstructure evolution and mechanical properties of experimental steel were studied by SEM and XRD. The experimental steel was held for 30 minutes at 640°C, 680°C, 720°C, 760°C, 800°C, respectively. When the annealing temperature was 640°C, cementite particles precipitated between the austenite and ferrite phase boundary. As the annealing temperature increased, the cementite gradually dissolved and disappeared, the fraction of lamellar austenite increased significantly. When the annealing temperature is 800°C, the coarse equiaxed austenite and ferrite appeared. The yield strength (YS) decreased, the product of strength and elongation (PSE) and total elongation (TE) both increased first and then decreased, while the ultimate tensile strength (UTS) showed the opposite trend. The experimental steel exhibited excellent comprehensive mechanical properties after held at 760°C for 30 min. The UTS was 870 MPa, the YS was 703 MPa, and the TE was 77 %, the PSE was 67 GPa·%.


2014 ◽  
Vol 783-786 ◽  
pp. 21-26
Author(s):  
Xiao Jun Liang ◽  
Ming Jian Hua ◽  
Anthony J. DeArdo

Thermomechanical controlled processing is a very important way to control the microstructure and mechanical properties in low carbon, high strength steel. This is especially true in the case of bainite formation, where the complexity of the austenite-bainite transformation makes the control of the processing important. In this study, a low carbon, high manganese steel containing niobium was investigated to better understand the roles of austenite conditioning and cooling rates on the bainitic phase transformation. Specimens were compared with and without deformation, and followed by seven different cooling rates ranging between 0.5°C/s and 40°C/s. The CCT curves showed that the transformation behaviors and temperatures are very different. The different bainitic microstructures which varied with austenite deformation and cooling rates will be discussed.


Sign in / Sign up

Export Citation Format

Share Document