Plasticity and structure evolution of ferrite and martensite in DP 1180 during tension and cyclic bending under tension to large strains

Author(s):  
Krishna Yaddanapudi ◽  
Marko Knezevic ◽  
Subhash Mahajan ◽  
Irene J. Beyerlein
2012 ◽  
Vol 586 ◽  
pp. 302-305
Author(s):  
Sergei Alexandrov ◽  
Elena Lyamina ◽  
Li Hui Lang

The paper concerns with three-dimensional analysis of the process of bending under tension for incompressible, rigid viscoplastic material at large strains. The constitutive equations consist of the Mises-type yield criterion and its associated flow rule. No restriction is imposed on the dependence of the equivalent stress on the equivalent strain rate. The problem is reduced to evaluating ordinary integrals and solving transcendental equations.


2010 ◽  
Vol 667-669 ◽  
pp. 289-294 ◽  
Author(s):  
Gennady A. Salishchev ◽  
N.D. Stepanov ◽  
A.V. Kuznetsov ◽  
Sergey V. Zherebtsov ◽  
Oleg R. Valiakhmetov ◽  
...  

Evolution of micro- and macrostructure and mechanical properties of oxygen-free copper after MAF at room temperature was studied. MAF included sequential upsetting and drawing with total cycles number equal to 20 and maximum strain ≈50. MAF causes the formation of homogenous UFG structure with a grain/subgrain size of 0.3 m and fraction of high angle boundaries 50%, but macrostructure is heterogeneous. Rough shear macrobands areas of different orientation are observed. MAF results in significant strengthening from 280 MPa to 445 MPa, but samples remain very ductile even after large strains. Mechanisms of UFG structure formations during MAF are discussed.


CrystEngComm ◽  
2017 ◽  
Vol 19 (45) ◽  
pp. 6858-6868 ◽  
Author(s):  
Wenyang Zhang ◽  
Jingqing Li ◽  
Yingrui Shang ◽  
Hongfei Li ◽  
Shichun Jiang ◽  
...  

Phase separation occurs during deformation for all the PBT/PC samples. At large strains, microfibril slippage plays a leading role in the macroscopic strain.


Author(s):  
Vincent Le Corre ◽  
Ian Probyn

This paper focuses upon validation of the 3-D FEA model for cyclic bending under tension load case. An important aspect of accurately modelling the behaviour is the complex stick, partial slip and full slip behaviour of the internal components. Particular attention is paid to the resisting moment resulting from internal friction, known as the friction moment. The effect of increasing tension on the friction moment is studied. The kinematics of sliding are compared to analytical models developed for helically wound structures, such as flexible pipes, and show a very good correlation that confirms the accuracy of the model. Also, the mean axial strain of the steel tubes due to the friction induced by this sliding is highlighted. The hysteretic curves of the axial strain in steel tubes subjected to cyclic bending under tension are derived and validated against full scale experimental data.


Author(s):  
W.M. Stobbs

I do not have access to the abstracts of the first meeting of EMSA but at this, the 50th Anniversary meeting of the Electron Microscopy Society of America, I have an excuse to consider the historical origins of the approaches we take to the use of electron microscopy for the characterisation of materials. I have myself been actively involved in the use of TEM for the characterisation of heterogeneities for little more than half of that period. My own view is that it was between the 3rd International Meeting at London, and the 1956 Stockholm meeting, the first of the European series , that the foundations of the approaches we now take to the characterisation of a material using the TEM were laid down. (This was 10 years before I took dynamical theory to be etched in stone.) It was at the 1956 meeting that Menter showed lattice resolution images of sodium faujasite and Hirsch, Home and Whelan showed images of dislocations in the XlVth session on “metallography and other industrial applications”. I have always incidentally been delighted by the way the latter authors misinterpreted astonishingly clear thickness fringes in a beaten (”) foil of Al as being contrast due to “large strains”, an error which they corrected with admirable rapidity as the theory developed. At the London meeting the research described covered a broad range of approaches, including many that are only now being rediscovered as worth further effort: however such is the power of “the image” to persuade that the above two papers set trends which influence, perhaps too strongly, the approaches we take now. Menter was clear that the way the planes in his image tended to be curved was associated with the imaging conditions rather than with lattice strains, and yet it now seems to be common practice to assume that the dots in an “atomic resolution image” can faithfully represent the variations in atomic spacing at a localised defect. Even when the more reasonable approach is taken of matching the image details with a computed simulation for an assumed model, the non-uniqueness of the interpreted fit seems to be rather rarely appreciated. Hirsch et al., on the other hand, made a point of using their images to get numerical data on characteristics of the specimen they examined, such as its dislocation density, which would not be expected to be influenced by uncertainties in the contrast. Nonetheless the trends were set with microscope manufacturers producing higher and higher resolution microscopes, while the blind faith of the users in the image produced as being a near directly interpretable representation of reality seems to have increased rather than been generally questioned. But if we want to test structural models we need numbers and it is the analogue to digital conversion of the information in the image which is required.


Author(s):  
R.W. Carpenter ◽  
Changhai Li ◽  
David J. Smith

Binary Nb-Hf alloys exhibit a wide bcc solid solution phase field at temperatures above the Hfα→ß transition (2023K) and a two phase bcc+hcp field at lower temperatures. The β solvus exhibits a small slope above about 1500K, suggesting the possible existence of a miscibility gap. An earlier investigation showed that two morphological forms of precipitate occur during the bcc→hcp transformation. The equilibrium morphology is rod-type with axes along <113> bcc. The crystallographic habit of the rod precipitate follows the Burgers relations: {110}||{0001}, <112> || <1010>. The earlier metastable form, transition α, occurs as thin discs with {100} habit. The {100} discs induce large strains in the matrix. Selected area diffraction examination of regions ∼2 microns in diameter containing many disc precipitates showed that, a diffuse intensity distribution whose symmetry resembled the distribution of equilibrium α Bragg spots was associated with the disc precipitate.


Sign in / Sign up

Export Citation Format

Share Document