Sol–gel based fabrication of novel glass-ceramics and composites for dental applications

2010 ◽  
Vol 30 (5) ◽  
pp. 730-739 ◽  
Author(s):  
X. Chatzistavrou ◽  
D. Esteve ◽  
E. Hatzistavrou ◽  
E. Kontonasaki ◽  
K.M. Paraskevopoulos ◽  
...  
2008 ◽  
Vol 396-398 ◽  
pp. 153-156 ◽  
Author(s):  
Xanthippi Chatzistavrou ◽  
E. Hatzistavrou ◽  
Nikolaos Kantiranis ◽  
Lambrini Papadopoulou ◽  
Eleana Kontonasaki ◽  
...  

The aim of this study was the fabrication using a sol-gel technique of a new glass-ceramic with potential use in dental applications. The characterization of the composition and microstructural properties of the produced material confirmed the similarity between the new sol-gel derived glass-ceramic and a commercial leucite based fluorapatite dental glass-ceramic. The produced material has potential application in dental restorations and it is expected to exhibit better control of composition, microstructure and properties due to the intrinsic advantages of the sol-gel preparation method.


Author(s):  
X. Chatzistavrou ◽  
E. Kontonasaki ◽  
K.M. Paraskevopoulos ◽  
P. Koidis ◽  
A.R. Boccaccini

2011 ◽  
Vol 493-494 ◽  
pp. 637-642 ◽  
Author(s):  
Xanthippi Chatzistavrou ◽  
Konstantinos M. Paraskevopoulos ◽  
Vehid Salih ◽  
Aldo Roberto Boccaccini ◽  
Toshihiro Kasuga

The aim of this work was to improve a newly developed family of glass-ceramic composite materials by incorporating silver ions in the ceramic structure, thus developing new Ag-doped materials with the ability of showing antibacterial activity for dental applications. Two different sol-gel methodologies were applied for the fabrication of colorless, homogenous and chemically durable materials which can slowly release silver ion for relatively long periods. Both methods led to the successful development of Ag-doped glass-ceramics with silver ions incorporated in the structure that can slowly release in buffer solution, during a period of 45 days. The potential, application of these materials involve the development of bioactive surfaces on dental substrates which can seal the marginal gap creating a bacterial free environment finally supporting the success of dental restorations.


ChemInform ◽  
1989 ◽  
Vol 20 (9) ◽  
Author(s):  
T. HAMASAKI ◽  
K. EGUCHI ◽  
Y. KOYANAGI ◽  
A. MATSUMOTO ◽  
T. UTSUNOMIYA ◽  
...  

2003 ◽  
Vol 32 (10) ◽  
pp. 928-929 ◽  
Author(s):  
Shinobu Fujihara ◽  
Seiki Kitta ◽  
Toshio Kimura

2009 ◽  
Vol 32 (1) ◽  
pp. 104-107 ◽  
Author(s):  
J. del-Castillo ◽  
A.C. Yanes ◽  
J. Méndez-Ramos ◽  
V.K. Tikhomirov ◽  
V.D. Rodríguez
Keyword(s):  
Sol Gel ◽  

2012 ◽  
Vol 96 (2) ◽  
pp. 476-480 ◽  
Author(s):  
Go Kawamura ◽  
Ryota Yoshimura ◽  
Kazunari Ota ◽  
Song-Yul Oh ◽  
Norio Hakiri ◽  
...  

Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 259
Author(s):  
Natalia Pawlik ◽  
Barbara Szpikowska-Sroka ◽  
Tomasz Goryczka ◽  
Ewa Pietrasik ◽  
Wojciech A. Pisarski

The synthesis and characterization of multicolor light-emitting nanomaterials based on rare earths (RE3+) are of great importance due to their possible use in optoelectronic devices, such as LEDs or displays. In the present work, oxyfluoride glass-ceramics containing BaF2 nanocrystals co-doped with Tb3+, Eu3+ ions were fabricated from amorphous xerogels at 350 °C. The analysis of the thermal behavior of fabricated xerogels was performed using TG/DSC measurements (thermogravimetry (TG), differential scanning calorimetry (DSC)). The crystallization of BaF2 phase at the nanoscale was confirmed by X-ray diffraction (XRD) measurements and transmission electron microscopy (TEM), and the changes in silicate sol–gel host were determined by attenuated total reflectance infrared (ATR-IR) spectroscopy. The luminescent characterization of prepared sol–gel materials was carried out by excitation and emission spectra along with decay analysis from the 5D4 level of Tb3+. As a result, the visible light according to the electronic transitions of Tb3+ (5D4 → 7FJ (J = 6–3)) and Eu3+ (5D0 → 7FJ (J = 0–4)) was recorded. It was also observed that co-doping with Eu3+ caused the shortening in decay times of the 5D4 state from 1.11 ms to 0.88 ms (for xerogels) and from 6.56 ms to 4.06 ms (for glass-ceramics). Thus, based on lifetime values, the Tb3+/Eu3+ energy transfer (ET) efficiencies were estimated to be almost 21% for xerogels and 38% for nano-glass-ceramics. Therefore, such materials could be successfully predisposed for laser technologies, spectral converters, and three-dimensional displays.


Sign in / Sign up

Export Citation Format

Share Document