Optimization for extracellular biosynthesis of silver nanoparticles by Penicillium aculeatum Su1 and their antimicrobial activity and cytotoxic effect compared with silver ions

2017 ◽  
Vol 77 ◽  
pp. 963-971 ◽  
Author(s):  
Liang Ma ◽  
Wei Su ◽  
Jian-Xin Liu ◽  
Xiao-Xi Zeng ◽  
Zhi Huang ◽  
...  
2018 ◽  
Vol 18 (12) ◽  
pp. 8133-8141 ◽  
Author(s):  
Liang Ma ◽  
Jianxin Liu ◽  
Wei Su ◽  
Xiaoxi Zeng ◽  
Xueying Liu ◽  
...  

The present work aimed to investigate extracellular biosynthesis of silver nanoparticles (AgNPs) mediated by an actinomycete strain and their cytotoxic effects compared with silver ions. The selected strain was identified as Streptomyces coelicoflavus KS-3 by phenotypical characteristics and 16S rRNA analysis. The formation of biosynthesized AgNPs was proved by an absorption peak observed at 437 nm. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) analyses revealed that the prepared AgNPs were spherical or approximately spherical followed by a small amount of truncated triangular, quadrangular and hexagonal with the particle diameters ranging from 2.33 to 91.3 nm. X-ray diffraction (XRD) pattern confirmed that the AgNPs presented a face-centered cubic (FCC) structure of crystalline silver. Energy dispersive of X-ray (EDX) spectrum and Fourier transform infrared spectroscopy (FTIR) analyses verified the existence of biomolecules, such as proteins, that participated in the formation and stabilization of AgNPs. Furthermore, the comparative study on cytotoxic effect of AgNPs indicated that the AgNPs exhibited higher biocompatibility towards human bronchial epithelial (HBE) cells than silver ions and exerted potent cytotoxic effect in a dose-dependent manner against human lung squamous cell carcinoma cells (HTB-182) and human lung adenocarcinoma cells (A549) with the concentrations ranging from 1 to 50 μg/mL.


Author(s):  
Vidyasagar G M ◽  
Shankaravva B ◽  
R Begum ◽  
Imrose ◽  
Sagar R ◽  
...  

Microorganisms like fungi, actinomycetes and bacteria are considered nanofactories and are helpful in the production of nanoparticles useful in the welfare of human beings. In the present study, we investigated the production of silver nanoparticles from Streptomyces species JF714876. Extracellular synthesis of silver nanoparticles by Streptomyces species was carried out using two different media. Silver nanoparticles were examined using UV-visible, IR and atomic force microscopy. The size of silver nanoparticles was in the range of 80-100 nm. Antimicrobial activity of silver nanoparticle against bacteria such as E. coli, S. aureus, and dermatophytes like T. rubrum and T. tonsurans was determined. Thus, this study suggests that the Streptomyces sp. JF741876 can produce silver ions that can be used as an antimicrobial substance.


2021 ◽  
Vol 359 ◽  
pp. 129859
Author(s):  
Li Wang ◽  
Govindasami Periyasami ◽  
Ali Aldalbahi ◽  
Vincenzo Fogliano

2018 ◽  
Vol 930 ◽  
pp. 212-217
Author(s):  
Marcos Antônio Guerra ◽  
Jeferson Prado Swerts ◽  
Mei Abe Funcia ◽  
Maria Gabriela Nogueira Campos

This study evaluated the antimicrobial activity of PET-Silver nanocomposite filaments at different concentrations (0, 0.180%, 0.135%, 0.090%, 0.045% and 0.022% w/w) of silver nanoparticles in order to determine the minimum inhibitory concentration and minimum bactericidal concentration of silver incorporated in the PET matrix. The in vitro antibacterial activity was evaluated by the AATCC standard 100: 2012 method, against Staphylococcus aureus ATCC 6538, and Klebsiella pneumonia ATCC 4532. The filaments were tested after one and twenty-one months of preparation to evaluate the effect of time on the antimicrobial activity of the nanocomposites. Moreover, the antimicrobial activity was also evaluated after dyeing the filaments. The silver-free PET filaments have not demonstrated antimicrobial activity and cytotoxicity against human dermal fibroblasts. Nevertheless, excepted for the filament with 0.022% of silver nanoparticles, all PET-Silver nanocomposites reduced more than 99% the colony-forming units (CFU) of Staphylococcus aureus and Klebsiella pneumonia after one and twenty-one months of preparation. This suggests that the MIC of silver nanoparticles incorporated in the PET matrix is lower than 220 ppm (w/w) and the MBC is between 0.022 and 0.045% (w/w). However, after the dyeing process, no antimicrobial activity was observed for any PET-Silver nanocomposite filaments. This may be attributed to the release of silver from the PET matrix during the dyeing process or to the reaction/inactivation of the silver ions by the salts used in this chemical treatment.


2013 ◽  
Vol 24 (2) ◽  
pp. 266-272 ◽  
Author(s):  
Priscyla D. Marcato ◽  
Natália V. Parizotto ◽  
Diego Stéfani T. Martinez ◽  
Amauri J. Paula ◽  
Iasmin R. Ferreira ◽  
...  

Author(s):  
Jsr Murthy ◽  
Venkata Kumar T ◽  
Narayana Rao V

Objective: Synthesis of varied sized and morphologically distinct silver nanoparticles (AgNPs) using callus/callus extract, and their promising antibacterial and cytotoxicity was reported from very few plant systems. Here, we investigated silver nanoparticle synthetic potential of Couroupita guianensis leaf callus extract and their antibacterial activity.Methods: synthesis of callus mediated silver nanoparticles and characterisation of physical, chemical, and antibacterial activity of AgNPs.Results: Callus extract rapidly reduced silver ions and stabilized nanoparticles have displayed characteristic maximum UV absorbance at 410 nm. SEM and AFM images revealed their spherical morphology and size variation, which is ranged from 30.38 nm to 88.32 nm and were in small aggregates. Capping of AgNPs by the phenolic compounds and proteins revealed from FTIR spectral peaks. Silver nanoparticles displayed significantly high antimicrobial activity against both Gram positive and negative bacterial strains compared to silver ions and gentamicin. This enhanced antimicrobial activity of AgNPs may due their small size leading to efficient molecular contact with cell surface, and uptake and interaction with vital biomolecules.Conclusions: Stable AgNPs were synthesized through reduction and capping of silver ions by polyphenols and proteins present in callus extract. Theenhanced antimicrobial activity of AgNPs may due to their small size leading to efficient molecular contact with the cell surface, penetration, andinteraction, and inactivation of vital biomolecules.KEY WORDS: Couroupita guianensis, callus extract, Silver nanoparticles (AgNPs), antibacterial activity


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Luis Jesús Villarreal-Gómez ◽  
Graciela Lizeth Pérez-González ◽  
Nina Bogdanchikova ◽  
Alexey Pestryakov ◽  
Vadim Nimaev ◽  
...  

The antimicrobial bioactivity of silver nanoparticles is well known, and they can be used widely in many applications, becoming especially important in the biomedical industry. On the other hand, the electrospun nanofibers possess properties that can enhance silver nanoparticle applicability. However, silver nanoparticle bioactivity differs depending on the loading of silver ions into electrospun nanofibers. This review is aimed at comparing different silver incorporation methods into electrospun nanofibers and their antimicrobial activity, discussing each procedure’s limitations, and presenting the most promising one. This review showed that the preferred techniques for incorporating silver nanoparticles were direct blending and ultraviolet irradiation methods due to their simplicity and efficient results. Besides, polyacrylonitrile nanofibers (PAN) have been the most reported system loaded with silver nanoparticles. Finally, independently of the technique used, silver nanoparticle-loaded nanofibers show high antimicrobial activity in all cases.


2012 ◽  
Vol 2 (4) ◽  
pp. 316-321 ◽  
Author(s):  
Sharanabasava V. Ganachari ◽  
Ravishankar Bhat ◽  
Raghunandan Deshpande ◽  
A. Venkataraman

2021 ◽  
Vol 33 (9) ◽  
pp. 2049-2052
Author(s):  
D. Muralidharan ◽  
A. Jaculin Raiza ◽  
K. Pandian

A single pot synthesis of gellan gum coated silver nanoparticles using aniline as a reducing agent has been investigated in present study. The reaction was facile at 80 ºC under reflux condition and the complete reduction of silver ions was noted within 2 h. The resulting gellan gum protected silver nanoparticle was isolated and analyzed with various analytical tools. The antimicrobial activity of the prepared nanocomposite had shown an excellent activity against some selected pathogenic microorganisms.


Sign in / Sign up

Export Citation Format

Share Document