Antimicrobial Activity of Silver Nanoparticles Synthesized by Streptomyces Species JF714876

Author(s):  
Vidyasagar G M ◽  
Shankaravva B ◽  
R Begum ◽  
Imrose ◽  
Sagar R ◽  
...  

Microorganisms like fungi, actinomycetes and bacteria are considered nanofactories and are helpful in the production of nanoparticles useful in the welfare of human beings. In the present study, we investigated the production of silver nanoparticles from Streptomyces species JF714876. Extracellular synthesis of silver nanoparticles by Streptomyces species was carried out using two different media. Silver nanoparticles were examined using UV-visible, IR and atomic force microscopy. The size of silver nanoparticles was in the range of 80-100 nm. Antimicrobial activity of silver nanoparticle against bacteria such as E. coli, S. aureus, and dermatophytes like T. rubrum and T. tonsurans was determined. Thus, this study suggests that the Streptomyces sp. JF741876 can produce silver ions that can be used as an antimicrobial substance.

2016 ◽  
Vol 8 (1) ◽  
pp. 106-111
Author(s):  
Somnath BHOWMIK ◽  
Badal Kumar DATTA ◽  
Ajay Krishna SAHA ◽  
Pradyut CHAKMA ◽  
Narayan Chandra MANDAL

The biological synthesis of nanoparticles using plant extracts plays an important role in the field of nanotechnology. In this study, rapid, simple approach was applied for synthesis of silver nanoparticles using , Clerodendrum infortunatum, Mucuna interrupta, Phlogancanthus thyrsiflorus and Sansevieria trifasciata aqueous leaf extract. The plant extract acts both as reducing agent as well as capping agent. To identify the compounds responsible for reduction of silver ions, the functional groups present in plant extract were investigated by FTIR. Various techniques used to characterize synthesized nanoparticles are Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and UV–Visible spectrophotometer. Results confirmed that this protocol was simple, rapid, one step, eco-friendly, non-toxic and might be an alternative conventional physical/chemical methods. Conversion of silver nanoparticles takes place at room temperature without the involvement of any hazardous chemicals.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Ram Prasad ◽  
Vyshnava Satyanarayana Swamy

The unique property of the silver nanoparticles having the antimicrobial activity drags the major attention towards the present nanotechnology. The environmentally nontoxic, ecofriendly, and cost-effective method that has been developed for the synthesis of silver nanoparticles using plant extracts creates the major research interest in the field of nanobiotechnology. The synthesized silver nanoparticles have been characterized by the UV-visible spectroscopy, atomic force microscopy (AFM), and scanning electron microscopy (SEM). Further, the antibacterial activity of silver nanoparticles was evaluated by well diffusion method, and it was found that the biogenic silver nanoparticles have antibacterial activity against Escherichia coli (ATCC 25922), Staphylococcus aureus (ATCC 29213), Pseudomonas aeruginosa (ATCC 27853), Azotobacter chroococcum WR 9, and Bacillus licheniformis (MTCC 9555).


2020 ◽  
Vol 11 (2) ◽  
pp. 1849-1856
Author(s):  
Chin Zi Hang ◽  
Neeraj Kumar Fuloria ◽  
Oh Jian Hong ◽  
Chuah Bee Kim ◽  
Bernice Yii Shu Ting ◽  
...  

Facts over microorganisms to predominate periodontitis, shifting of human microbiota by Dimocarpus longan (D. longan) plant, and potentiation of antimicrobial activity by biosynthetic silver nanoparticles (SNPs) intended present study to biosynthesize, optimize, characterize and evaluate the antimicrobial potential of silver nanoparticles (SNPs) obtained using D. longan leaves aqueous extract (DLLAE). Study involved preparation of DLLAE using decoction method. The DLLAE was subjected to biosynthesis of SNPs followed by optimization (using UV-Visible spectrometry), characterization (by FTIR, FESEM, XRD, and EDX), stability, and antimicrobial activity of SNPs against periodontitis triggering human microflora. Biosynthesized SNPs exhibited signal between 416-453 nm. Optimization study established AgNO3 concentration (5 mM), pH 4, DLLAE and AgNO3 ratio (1:9) and temperature (60°C) as parametric requirement for SNPs biosynthesis using DLLAE. Stability study exhibited signal between 489-553 nm supporting SNPs stability. Characterization data of FESEM showed that SNPs were poly dispersed, and spherical shaped. Biosynthesized SNPs size ranged from 74.82 nm to 131.5 nm. The XRD data revealed presence of signals at 38.08°, 44.33°, 64.47°, and 78.83° 2θ values indexed to silver cubic structure planes. In EDX study, silver exhibited strong signal (55.54%). Antimicrobial investigation explored the high inhibitory potential of SNPs against B. subtilis and P. aeruginosa; and low inhibitory potential against S. aureus and E. coli. Present study conclude that biosynthesis of SNPs using DLLAE is an efficient method and biosynthetic SNPs possess high antimicrobial potential against P. aeruginosa and B. subtilis the periodontitis triggering pathogens.


Coatings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1295
Author(s):  
Shahid Ali ◽  
Muhammad Rahim ◽  
Perveen Fazil ◽  
Malik Shoaib Ahmad ◽  
Azeem Ullah ◽  
...  

The silver nanoparticles were synthesized, functionalized with afzelechin and characterized using UV-Visible spectroscopy. A difference of 20 nm was observed in surface plasmon resonance of bare and functionalized silver nanoparticles which indicates afzelechin conjugation with silver nanoparticles. The atomic force microscopy (AFM) technique was used for the determination of the size and morphology of synthesized silver nanoparticles. The afzelechin conjugated silver nanoparticles were spherical and their sizes ranged from 3 to 10 nm with an average size of 8 nm while the bare silver nanoparticles were also spherical and their sizes ranged from 3 to 10 nm with an average size of 6 nm. The average sizes were also calculated by fitting their UV-Visible absorption spectra. Fitting is based on the Mie and Mie Gans models, which deduced that afzelechin conjugated silver nanoparticles were 96.5% spherical and 3.5% spheroidal with an average size of 5 nm while bare silver nanoparticles were 100% spherical with an average size of 4 nm. Both the fitting model as well as the AFM results showed a difference of 3 nm between the sizes of afzelechin conjugated silver nanoparticles while 2 nm differences was observed for bare silver nanoparticles. The band gap energy of afzelechin conjugated silver nanoparticles and bare silver nanoparticles were calculated via Tauc’s equation and were found to be 5.1 eV and 5.4 eV, respectively. A difference of 0.3 eV was observed in band gap energies of afzelechin conjugated silver nanoparticles and bare silver nanoparticles.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Ravishankar Bhat ◽  
Raghunandan Deshpande ◽  
Sharanabasava V. Ganachari ◽  
Do Sung Huh ◽  
A. Venkataraman

This is a report on photo-irradiated extracellular synthesis of silver nanoparticles using the aqueous extract of edible oyster mushroom (Pleurotus florida) as a reducing agent. The appearance, size, and shape of the silver nanoparticles are understood by UV-visible spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, and atomic force microscopy. The X-ray diffraction studies, energy dispersive X-ray analysis indicate that particles are crystalline in nature. Fourier transform infrared spectroscopy analysis revealed that the nanoparticles are covered with biomoieties on their surface. As can be seen from our studies, the biofunctionalized silver nanoparticles thus produced have shown admirable antimicrobial effects, and the synthetic procedure involved is eco-friendly and simple, and hence high range production of the same can be considered for using them in many pharmaceutical applications.


2021 ◽  
Author(s):  
Fatma O Khalil ◽  
Enas M. Ghonaim ◽  
Shimaa Abed El-sattar ◽  
Sally W. Elkhadry ◽  
Hala El-Refai ◽  
...  

Abstract Till now the exact mechanism and effect of biogenic silver nanoparticles on fungus is an indefinable question. To focus on this issue, we prepared hydrothermal assisted thyme coated silver nanoparticles (T/AgNPs) and their toxic effect on Candida isolates is described. The role of thyme (Thymus Vulgaris) in the reduction of silver ions and stabilization of T/AgNPs are estimated by Fourier transforms infrared spectroscopy, structure and size of present silver nanoparticles were detected via atomic force microscopy as well as high-resolution transmission electron microscopy. The biological activity of T/AgNPs was observed against Candida isolates from COVID-19 Patients. Testing of virulence of Candida species using Multiplex PCR. T/AgNPs proved highly effective against Candida albicans, Candida kruzei, Candida glabrata and MIC values ranging from 156.25 to 1,250 µg/mL and MFC values ranging from 312.5 to 5,000 µg/mL. The structural and morphological modifications due to T/AgNPs on Candida albicans were detected by TEM. It was highly observed that when Candida albicans cells were subjected to 50 and 100 µg/mL T/AgNPs, a remarkable change in the cell wall and cell membrane was observed.


2016 ◽  
Vol 57 ◽  
pp. 58-66 ◽  
Author(s):  
Dattu Singh ◽  
Vandana Rathod ◽  
Ashish Kumar Singh ◽  
Manzoor Ul Haq ◽  
Jasmine Mathew ◽  
...  

Biological method is considered as eco-friendly and reliable process for the synthesis of silver nanoparticles (AgNps) in the field of nanotechnology due to its tremendous applications in various fields. In this study we have isolated a total of twelve endophytic fungi from leaves ofCurcumalonga(turmeric) andCatharanthusroseusout of which six endophytic fungi showed their ability to synthesized AgNps from silver nitrate (AgNO3)solution which splits into a positive silver ion (Ag+) and a negative nitrate ion (NO3-) in order to turn the silver ions into solid silver (Ago). Of the six positive endophytic fungi VRD2 showed good and encouraging results and was identified asPenicillium spinulosumVRD2. UV-Visible Spectroscopy confirms the AgNps showing maximum peak at 425nm implying the bioreduction of AgNO3. Transmission Electron Microscopy (TEM) revealed the particle are spherical and well dispersed without agglomeration size ranging from 25-30nm.


2019 ◽  
Author(s):  
Priya Prakash ◽  
Travis Lantz ◽  
Krupal P. Jethava ◽  
Gaurav Chopra

Amyloid plaques found in the brains of Alzheimer’s disease (AD) patients primarily consists of amyloid beta 1-42 (Ab42). Commercially, Ab42 is synthetized using peptide synthesizers. We describe a robust methodology for expression of recombinant human Ab(M1-42) in Rosetta(DE3)pLysS and BL21(DE3)pLysS competent E. coli with refined and rapid analytical purification techniques. The peptide is isolated and purified from the transformed cells using an optimized set-up for reverse-phase HPLC protocol, using commonly available C18 columns, yielding high amounts of peptide (~15-20 mg per 1 L culture) in a short time. The recombinant Ab(M1-42) forms characteristic aggregates similar to synthetic Ab42 aggregates as verified by western blots and atomic force microscopy to warrant future biological use. Our rapid, refined, and robust technique to purify human Ab(M1-42) can be used to synthesize chemical probes for several downstream in vitro and in vivo assays to facilitate AD research.


Author(s):  
Umadevi M ◽  
Rani T ◽  
Balakrishnan T ◽  
Ramanibai R

Nanotechnology has great promise for improving the therapeutic potential of medicinal molecules and related agents. In this study, silver nanoparticles of different sizes were synthesized in an ultrasonic field using the chemical reduction method with sodium borohydride as a reducing agent. The size effect of silver nanoparticles on antimicrobial activity were tested against the microorganisms Staphylococcus aureus (MTCC No. 96), Bacillus subtilis (MTCC No. 441), Streptococcus mutans (MTCC No. 497), Escherichia coli (MTCC No. 739) and Pseudomonas aeruginosa (MTCC No. 1934). The results shows that B. subtilis, and E. coli were more sensitive to silver nanoparticles and its size, indicating the superior antimicrobial efficacy of silver nanoparticles. 


2021 ◽  
Vol 359 ◽  
pp. 129859
Author(s):  
Li Wang ◽  
Govindasami Periyasami ◽  
Ali Aldalbahi ◽  
Vincenzo Fogliano

Sign in / Sign up

Export Citation Format

Share Document