Self-assembled fibrinogen nanofibers support fibroblast adhesion and prevent E. coli infiltration

Author(s):  
Naiana Suter ◽  
Arundhati Joshi ◽  
Timo Wunsch ◽  
Nina Graupner ◽  
Karsten Stapelfeldt ◽  
...  
Coatings ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 456 ◽  
Author(s):  
Judit Buxadera-Palomero ◽  
Kim Albó ◽  
Francisco Javier Gil ◽  
Carlos Mas-Moruno ◽  
Daniel Rodríguez

Titanium dental implants are widely used for the replacement of damaged teeth. However, bacterial infections at the interface between soft tissues and the implant can impair the functionality of the device and lead to failure. In this work, the preparation of an antifouling coating of polyethylene glycol (PEG) on titanium by pulsed electrodeposition was investigated in order to reduce Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) adhesion while maintaining human fibroblast adhesion. Different pulsed conditions were prepared and characterized by contact angle, Focused Ion Beam (FIB), Fourier Transformed Infrared Spectroscopy in the Attenuated Total Reflectance mode (ATR-FTIR), and X-ray photoelectron spectroscopy (XPS). XPS tested fibronectin adsorption. S. aureus, E. coli and human fibroblast adhesion was tested in vitro in both mono and co-culture settings. Physicochemical characterization proved useful for confirming the presence of PEG and evaluating the efficiency of the coating methods. Fibronectin adsorption decreased for all of the conditions, but an adsorption of 20% when compared to titanium was maintained, which supported fibroblast adhesion on the surfaces. In contrast, S. aureus and E. coli attachment on coated surfaces decreased up to 90% vs. control titanium. Co-culture studies with the two bacterial strains and human fibroblasts showed the efficacy of the coatings to allow for eukaryotic cell adhesion, even in the presence of pre-adhered bacteria.


Coatings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1014
Author(s):  
Zijiao Zhang ◽  
Ni Kou ◽  
Weilong Ye ◽  
Shuo Wang ◽  
Jiaju Lu ◽  
...  

Background: Infection that is related to implanted biomaterials is a serious issue in the clinic. Antimicrobial peptides (AMPs) have been considered as an ideal alternative to traditional antibiotic drugs, for the treatment of infections, while some problems, such as aggregation and protein hydrolysis, are still the dominant concerns that compromise their antimicrobial efficiency in vivo. Methods: In this study, antimicrobial peptides underwent self-assembly on gold substrates, forming good antibacterial surfaces, with stable antibacterial behavior. The antimicrobial ability of AMPs grafted on the surfaces, with or without glycine spaces or a primer layer, was evaluated. Results: Specifically, three Pac-525 derivatives, namely, Ac-CGn-KWRRWVRWI-NH2 (n = 0, 2, or 6) were covalently grafted onto gold substrates via the self-assembling process for inhibiting the growth of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Furthermore, the alkanethiols HS(CH)10SH were firstly self-assembled into monolayers, as a primer layer (SAM-SH) for the secondary self-assembly of Pac-525 derivatives, to effectively enhance the bactericidal performance of the grafted AMPs. The -(CH)10-S-S-G6Pac derivative was highly effective against S. aureus and E. coli, and reduced the viable amount of E. coli and S. aureus to 0.4% and 33.2%, respectively, after 24 h of contact. In addition, the immobilized AMPs showed good biocompatibility, promoting bone marrow stem cell proliferation. Conclusion: the self-assembled monolayers of the Pac-525 derivatives have great potential as a novel therapeutic method for the treatment of implanted biomaterial infections.


2007 ◽  
Vol 73 (13) ◽  
pp. 4300-4307 ◽  
Author(s):  
Shuyu Hou ◽  
Erik A. Burton ◽  
Karen A. Simon ◽  
Dustin Blodgett ◽  
Yan-Yeung Luk ◽  
...  

ABSTRACT Bacterial biofilms cause serious problems, such as antibiotic resistance and medical device-related infections. To further understand bacterium-surface interactions and to develop efficient control strategies, self-assembled monolayers (SAMs) of alkanethiols presenting different functional groups on gold films were analyzed to determine their resistance to biofilm formation. Escherichia coli was labeled with green florescence protein, and its biofilm formation on SAM-modified surfaces was monitored by confocal laser scanning microscopy. The three-dimensional structures of biofilms were analyzed with the COMSTAT software to obtain information about biofilm thickness and surface coverage. SAMs presenting methyl, l-gulonamide (a sugar alcohol tethered with an amide bond), and tri(ethylene glycol) (TEG) groups were tested. Among these, the TEG-terminated SAM was the most resistant to E. coli biofilm formation; e.g., it repressed biofilm formation by E. coli DH5α by 99.5% ± 0.1% for 1 day compared to the biofilm formation on a bare gold surface. When surfaces were patterned with regions consisting of methyl-terminated SAMs surrounded by TEG-terminated SAMs, E. coli formed biofilms only on methyl-terminated patterns. Addition of TEG as a free molecule to growth medium at concentrations of 0.1 and 1.0% also inhibited biofilm formation, while TEG at concentrations up to 1.5% did not have any noticeable effects on cell growth. The results of this study suggest that the reduction in biofilm formation on surfaces modified with TEG-terminated SAMs is a result of multiple factors, including the solvent structure at the interface, the chemorepellent nature of TEG, and the inhibitory effect of TEG on cell motility.


2019 ◽  
Vol 6 (1) ◽  
pp. 654-663 ◽  
Author(s):  
Ranajit Barman ◽  
Tathagata Mondal ◽  
Jayita Sarkar ◽  
Amrita Sikder ◽  
Suhrit Ghosh

Biomaterials ◽  
2012 ◽  
Vol 33 (30) ◽  
pp. 7556-7564 ◽  
Author(s):  
Won Ho Kong ◽  
Dong Kyung Sung ◽  
Ki Su Kim ◽  
Ho Sang Jung ◽  
Eun Ji Gho ◽  
...  

2001 ◽  
Vol 16 (9-12) ◽  
pp. 745-755 ◽  
Author(s):  
Jen-Jr Gau ◽  
Esther H Lan ◽  
Bruce Dunn ◽  
Chih-Ming Ho ◽  
Jason C.S Woo

Sign in / Sign up

Export Citation Format

Share Document