Covalent triazine framework (CTF-0) surface as a smart sensing material for the detection of CWAs and industrial pollutants

2022 ◽  
Vol 139 ◽  
pp. 106334
Author(s):  
Sehrish Sarfaraz ◽  
Muhammad Yar ◽  
Khurshid Ayub
2019 ◽  
Vol 48 (20) ◽  
pp. 5266-5302 ◽  
Author(s):  
Xigui Liu ◽  
Danlian Huang ◽  
Cui Lai ◽  
Guangming Zeng ◽  
Lei Qin ◽  
...  

Recent advances in covalent organic frameworks (COFs) as a smart sensing material are summarized and highlighted.


1999 ◽  
Vol 39 (10-11) ◽  
pp. 221-224 ◽  
Author(s):  
Jana Zagorc-Končan ◽  
J. Šömen

Microbial purification capacity is an important factor in natural self-regulation in water. Evaluating the fate of biodegradable organic pollution downstream from the discharge seems an appropriate way to follow the effect of pollution and its hazard assessment, which dictates the needed sanitation measures. We suggest a simple test for such monitoring. A modification of the additional oxygen demand test, standardised in Ausgewählte Methoden der Wasseruntersuchung, was applied in two river case studies. The additional oxygen demand is a measure of the capability and rate of biodegradation of known organic substance as well as of the amount and activity of heterotrophic organisms in the river. The original test using peptone and glucose as additional feedings of BOD samples was modified by the use of other organic biodegradable model substances characteristic for individual industrial pollutants. The test was found to be an excellent indicator of adapted microorganisms, which are essential for the biodegradation of the appointed organic substances downstream of their discharge into the receiving stream.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 783 ◽  
Author(s):  
Andrea Gaiardo ◽  
David Novel ◽  
Elia Scattolo ◽  
Michele Crivellari ◽  
Antonino Picciotto ◽  
...  

The substrate plays a key role in chemoresistive gas sensors. It acts as mechanical support for the sensing material, hosts the heating element and, also, aids the sensing material in signal transduction. In recent years, a significant improvement in the substrate production process has been achieved, thanks to the advances in micro- and nanofabrication for micro-electro-mechanical system (MEMS) technologies. In addition, the use of innovative materials and smaller low-power consumption silicon microheaters led to the development of high-performance gas sensors. Various heater layouts were investigated to optimize the temperature distribution on the membrane, and a suspended membrane configuration was exploited to avoid heat loss by conduction through the silicon bulk. However, there is a lack of comprehensive studies focused on predictive models for the optimization of the thermal and mechanical properties of a microheater. In this work, three microheater layouts in three membrane sizes were developed using the microfabrication process. The performance of these devices was evaluated to predict their thermal and mechanical behaviors by using both experimental and theoretical approaches. Finally, a statistical method was employed to cross-correlate the thermal predictive model and the mechanical failure analysis, aiming at microheater design optimization for gas-sensing applications.


2021 ◽  
pp. 111448
Author(s):  
Chi-Hsin S. Chen ◽  
Tien-Chueh Kuo ◽  
Han-Chun Kuo ◽  
Yufeng J. Tseng ◽  
Ching-Hua Kuo ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 631
Author(s):  
Narges Shaabani ◽  
Nora W. C. Chan ◽  
Abebaw B. Jemere

A molecularly imprinted sol-gel is reported for selective and sensitive electrochemical determination of the drug naloxone (NLX). The sensor was developed by combining molecular imprinting and sol-gel techniques and electrochemically grafting the sol solution onto a functionalized multiwall carbon nanotube modified indium-tin oxide (ITO) electrode. The sol-gel layer was obtained from acid catalyzed hydrolysis and condensation of a solution composed of triethoxyphenylsilane (TEPS) and tetraethoxysilane (TES). The fabrication, structure and properties of the sensing material were characterized via scanning electron microscopy, spectroscopy and electrochemical techniques. Parameters affecting the sensor’s performance were evaluated and optimized. A sensor fabricated under the optimized conditions responded linearly between 0.0 µM and 12 µM NLX, with a detection limit of 0.02 µM. The sensor also showed good run-to-run repeatability and batch-to-batch performance reproducibility with relative standard deviations (RSD) of 2.5–7.8% (n = 3) and 9.2% (n = 4), respectively. The developed sensor displayed excellent selectivity towards NLX compared to structurally similar compounds (codeine, fentanyl, naltrexone and noroxymorphone), and was successfully used to measure NLX in synthetic urine samples yielding recoveries greater than 88%.


Author(s):  
Huan Chen ◽  
Jintao Jiang ◽  
Zhe Chen ◽  
Binjie Du ◽  
Chenghao Dai ◽  
...  

New self-powered hydrogels that reversibly change electrical signals in response to circumambient multistimuli are of interest for the development of the next-generation smart sensing devices. In this work, a new...


Sign in / Sign up

Export Citation Format

Share Document