Regulation of Cell Differentiation via Synergistic Self-powered Stimulation and Degradation Behavior of a Biodegradable Composite Piezoelectric Scaffold for Cartilage tissue

Nano Energy ◽  
2021 ◽  
pp. 106545
Author(s):  
Yen-Han Lai ◽  
Yung-Hsin Chen ◽  
Arnab Pal ◽  
Syun-Hong Chou ◽  
Shwu-Jen Chang ◽  
...  
Author(s):  
Yuxuan Zhong ◽  
Xiang Li ◽  
Fanglin Wang ◽  
Shoushuai Wang ◽  
Xiaohong Wang ◽  
...  

The mesenchymal stem cells have multidirectional differentiation potential and can differentiate into adipocytes, osteoblasts, cartilage tissue, muscle cells and so on. The adipogenic differentiation of mesenchymal stem cells is of great significance for the construction of tissue-engineered fat and the treatment of soft tissue defects. Exosomes are nanoscale vesicles secreted by cells and widely exist in body fluids. They are mainly involved in cell communication processes and transferring cargo contents to recipient cells. In addition, exosomes can also promote tissue and organ regeneration. Recent studies have shown that various exosomes can influence the adipogenic differentiation of stem cells. In this review, the effects of exosomes on stem cell differentiation, especially on adipogenic differentiation, will be discussed, and the mechanisms and conclusions will be drawn. The main purpose of studying the role of these exosomes is to understand more comprehensively the influencing factors existing in the process of stem cell differentiation into adipocytes and provide a new idea in adipose tissue engineering research.


2017 ◽  
Vol 23 (15-16) ◽  
pp. 795-810 ◽  
Author(s):  
Stanley Chu ◽  
Shankar Lalitha Sridhar ◽  
Umut Akalp ◽  
Stacey C. Skaalure ◽  
Franck J. Vernerey ◽  
...  

Author(s):  
H. Alasam

The possibility that intrathymic T-cell differentiation involves stem cell-lymphoid interactions in embryos led us to study the ultrastructure of epithelial cell in normal embryonic thymus. Studies in adult thymus showed that it produces several peptides that induce T-cell differentiation. Several of them have been chemically characterized, such as thymosin α 1, thymopoietin, thymic humoral factor or the serum thymic factor. It was suggested that most of these factors are secreted by populations of A and B-epithelial cells.Embryonic materials were obtained from inbred matings of Swiss Albino mice. Thymuses were disected from embryos 17 days old and prepared for transmission electron microscopy. Our studies showed that embryonic thymus at this stage contains undifferentiated and differentiated epithelial cells, large lymphoblasts, medium and few small lymphocytes (Fig. 5). No differences were found between cortical and medullary epithelial cells, in contrast to the findings of Van Vliet et al,. Epithelial cells were mostly of the A-type with low electron density in both cytoplasm and nucleus. However few B-type with high electron density were also found (Fig. 7).


2001 ◽  
Vol 120 (5) ◽  
pp. A517-A517
Author(s):  
A MIZOGUCHI ◽  
E MIZOGUCHI ◽  
Y DEJONG ◽  
H TAKEDATSU ◽  
F PREFFER ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document