Protein and peroxidase activity in strawberry plants under the combined effects of drought, low and high temperature

2012 ◽  
Vol 29 ◽  
pp. S185
Author(s):  
Müge Kesici ◽  
Asuman Cansev ◽  
Sergül Ergin ◽  
Hatice Gülen
2018 ◽  
Vol 223 ◽  
pp. 137-149 ◽  
Author(s):  
O. Urban ◽  
M. Hlaváčová ◽  
K. Klem ◽  
K. Novotná ◽  
B. Rapantová ◽  
...  

Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1522
Author(s):  
Hikaru Endo ◽  
Toru Sugie ◽  
Yukiko Yonemori ◽  
Yuki Nishikido ◽  
Hikari Moriyama ◽  
...  

Ocean warming and the associated changes in fish herbivory have caused polarward distributional shifts in the majority of canopy-forming macroalgae that are dominant in temperate Japan, but have little effect on the alga Sargassum fusiforme. The regeneration ability of new shoots from holdfasts in this species may be advantageous in highly grazed environments. However, little is known about the factors regulating this in Sargassum species. Moreover, holdfast tolerance to high-temperature and nutrient-poor conditions during summer has rarely been evaluated. In the present study, S. fusiforme holdfast responses to the combined effects of temperature and nutrient availability were compared to those of sexually reproduced propagules. The combined effects of holdfast fragmentation and irradiance on regeneration were also evaluated. Propagule growth rate values changed from positive to negative under the combination of elevated temperature (20 °C–30 °C) and reduced nutrient availability, whereas holdfasts exhibited a positive growth rate even at 32 °C in nutrient-poor conditions. The regeneration rate increased with holdfast fragmentation (1 mm segments), but was unaffected by decreased irradiance. These results suggest that S. fusiforme holdfasts have a higher tolerance to high-temperature and nutrient-poor conditions during summer than propagules, and regenerate new shoots even if 1-mm segments remain in shaded refuges for fish herbivory avoidance.


2012 ◽  
Vol 39 (3) ◽  
pp. 190 ◽  
Author(s):  
Gautam P. Pradhan ◽  
P. V. Vara Prasad ◽  
Allan K. Fritz ◽  
Mary B. Kirkham ◽  
Bikram S. Gill

Drought and high temperature often occurs simultaneously, causing significant yield losses in wheat (Triticum aestivum L.). The objectives of this study were to: (i) quantify independent and combined effects of drought and high temperature stress on synthetic hexaploid wheat genotypes at anthesis and at 21 days after anthesis; and (ii) determine whether responses to stress varied among genotypes. Four synthetic hexaploid and two spring wheat genotypes were grown from emergence to anthesis (Experiment I) and emergence to 21 days after anthesis (Experiment II), with full irrigation and 21/15°C day/night temperature. Thereafter, four treatments were imposed for 16 days as (a) optimum condition: irrigation + 21/15°C, (b) drought stress: withhold irrigation + 21/15°C, (c) high temperature stress: irrigation + 36/30°C and (d) combined stress: withhold irrigation + 36/30°C. Results indicated a decrease in leaf chlorophyll, individual grain weight and grain yield in an increasing magnitude of drought < high temperature < combined stress. There were 69, 81 and 92% grain yield decreases in Experiment I and 26, 37 and 50% in Experiment II under drought, high temperature and combined stress respectively. Synthetic hexaploid wheat genotypes varied in their response to stresses. Genotypes ALTAR 84/AO’S’ and ALTAR 84/Aegilops tauschii Coss. (WX 193) were least affected by combined stress in Experiments I and II respectively. Overall, combined effect of drought + high temperature stress was more detrimental than the individual stress and the interaction effect was hypo-additive in nature.


2009 ◽  
Vol 15 (2) ◽  
pp. 213-221 ◽  
Author(s):  
Jerónimo Torres-Porras ◽  
Juan Carranza ◽  
Javier Pérez-González

Botany ◽  
2016 ◽  
Vol 94 (8) ◽  
pp. 635-642 ◽  
Author(s):  
Zoryana Shibel ◽  
Stephen B. Heard

Understanding the combined effects of stressors on plants is important for understanding how they will tolerate herbivory and other damage under unfavorable conditions. When two stresses have synergistic effects, plants may experience particularly strong impacts. We examined individual and combined effects of drought stress and clipping (simulated herbivory) on two species of goldenrods (Solidago altissima L. and S. gigantea Ait.). Each stress reduced production of most plant structures, with drought stress having stronger impacts than clipping. The effects of the two stresses were additive for S. gigantea but synergistic for S. altissima, at least for aboveground biomass and inflorescence biomass. Both species, when under stress, reallocated resources toward asexual reproduction (rhizomes) and away from sexual reproduction (inflorescences). Our results suggest that even closely related plants may tolerate damage differently when under abiotic stresses, and that predicting the additive vs. synergistic action of combined stresses will be difficult.


1984 ◽  
Vol 11 (6) ◽  
pp. 553 ◽  
Author(s):  
ME Nicolas ◽  
RM Gleadow ◽  
MJ Dalling

The effects of two levels of temperature and of water supply on grain development of wheat (cv. Warigal) were studied by imposing treatments during the early or late period of cell division. High temperature (28°C day/20°C night) accelerated development of the grain. Dry matter accumulation and cell division proceeded at a higher rate but had a shorter duration in the high temperature treatments. Maximum cell number, final cell size and the number of large starch granules per cell were not significantly reduced by high temperature. Drought and drought × high temperature reduced the storage capacity of the grain, with a decrease in number of cells and starch granules in the endosperm. Cell size was also reduced when treatments were imposed late during cell division. Duration of dry matter accumulation and cell division was reduced in the drought and drought × high temperature treatments. The combined effects of drought and high temperature were much more severe than those of each separate treatment. The amount of sucrose per cell was similar in all treatments. It appears unlikely that the supply of sucrose to the endosperm cells is the main limiting factor of dry matter accumulation in both drought and high temperature treatments.


Sign in / Sign up

Export Citation Format

Share Document