Somatic embryogenesis of sweet pearl millet (Pennisetum glaucum), a rich source of cellulosic biomass

2018 ◽  
Vol 44 ◽  
pp. S101
Author(s):  
S. Roy ◽  
S. Sarkar ◽  
S.K. Ghosh
2019 ◽  
Vol 99 (5) ◽  
pp. 701-714
Author(s):  
Hugo Alix ◽  
Gaëtan F. Tremblay ◽  
Martin H. Chantigny ◽  
Gilles Bélanger ◽  
Philippe Seguin ◽  
...  

Sweet pearl millet [Pennisetum glaucum (L.) R. Br.] and sweet sorghum [Sorghum bicolor (L.) Moench], previously tested for ethanol production, were evaluated as high sugar crops for animal feeds to possibly replace silage corn (Zea mays L.). We compared the forage yield, nutritive value, and ensilability of one hybrid of sweet pearl millet and two of sweet sorghum to a locally adapted silage corn hybrid in five Canadian ecozones. Forage yields of sweet pearl millet and sorghum were similar to that of silage corn in the Boreal Shield, Mixedwood Plain, and Atlantic Maritime ecozones, greater in the Prairies, and lower in the Pacific Maritime ecozone. Across sites, forage dry matter concentration was less for sweet pearl millet (289 g kg−1) and sweet sorghum (245 g kg−1) than for silage corn (331 g kg−1). Sweet pearl millet had a lower total digestible nutrient (TDN) concentration (452 g kg−1 DM) and aNDF digestibility (NDFd) than sweet sorghum and silage corn along with greater neutral detergent fibre (aNDF) and water-soluble carbohydrate (WSC) concentrations than silage corn. Sweet sorghum had greater aNDF and WSC, lower starch, and similar TDN (534 g kg−1 DM) concentrations, but greater NDFd compared with silage corn. Sweet pearl millet and sorghum fermented as well as silage corn, reaching low pH values and acceptable concentrations of lactic and volatile fatty acids. Sweet sorghum is therefore a viable alternative to silage corn in Canada except in the Pacific Maritime ecozone, but early-maturing hybrids with acceptable DM concentration at harvest are required.


2021 ◽  
Vol 13 (15) ◽  
pp. 8460
Author(s):  
Armel Rouamba ◽  
Hussein Shimelis ◽  
Inoussa Drabo ◽  
Mark Laing ◽  
Prakash Gangashetty ◽  
...  

Pearl millet (Pennisetum glaucum) is a staple food crop in Burkina Faso that is widely grown in the Sahelian and Sudano-Sahelian zones, characterised by poor soil conditions and erratic rainfall, and high temperatures. The objective of this study was to document farmers’ perceptions of the prevailing constraints affecting pearl millet production and related approaches to manage the parasitic weeds S. hermonthica. The study was conducted in the Sahel, Sudano-Sahelian zones in the North, North Central, West Central, Central Plateau, and South Central of Burkina Faso. Data were collected through a structured questionnaire and focus group discussions involving 492 participant farmers. Recurrent drought, S. hermonthica infestation, shortage of labour, lack of fertilisers, lack of cash, and the use of low-yielding varieties were the main challenges hindering pearl millet production in the study areas. The majority of the respondents (40%) ranked S. hermonthica infestation as the primary constraint affecting pearl millet production. Respondent farmers reported yield losses of up to 80% due to S. hermonthica infestation. 61.4% of the respondents in the study areas had achieved a mean pearl millet yields of <1 t/ha. Poor access and the high cost of introduced seed, and a lack of farmers preferred traits in the existing introduced pearl millet varieties were the main reasons for their low adoption, as reported by 32% of respondents. S. hermonthica management options in pearl millet production fields included moisture conservation using terraces, manual hoeing, hand weeding, use of microplots locally referred to as ‘zaï’, crop rotation and mulching. These management techniques were ineffective because they do not suppress the below ground S. hermonthica seed, and they are difficult to implement. Integrated management practices employing breeding for S. hermonthica resistant varieties with the aforementioned control measures could offer a sustainable solution for S. hermonthica management and improved pearl millet productivity in Burkina Faso.


2016 ◽  
Vol 26 (5) ◽  
pp. 604-613 ◽  
Author(s):  
John E. Beck ◽  
Michelle S. Schroeder-Moreno ◽  
Gina E. Fernandez ◽  
Julie M. Grossman ◽  
Nancy G. Creamer

Summer cover crop rotations, compost, and vermicompost additions can be important strategies for transition to organic production that can provide various benefits to crop yields, nitrogen (N) availability, and overall soil health, yet are underused in strawberry (Fragaria ×ananassa) production in North Carolina. This study was aimed at evaluating six summer cover crop treatments including pearl millet (Pennisetum glaucum), soybean (Glycine max), cowpea (Vigna unguiculata), pearl millet/soybean combination, pearl millet/cowpea combination, and a no cover crop control, with and without vermicompost additions for their effects on strawberry growth, yields, nutrient uptake, weeds, and soil inorganic nitrate-nitrogen and ammonium-nitrogen in a 2-year field experiment. Compost was additionally applied before seeding cover crops and preplant N fertilizer was reduced by 67% to account for organic N additions. Although all cover crops (with compost) increased soil N levels during strawberry growth compared with the no cover crop treatment, cover crops did not impact strawberry yields in the first year of the study. In the 2nd year, pearl millet cover crop treatments reduced total and marketable strawberry yields, and soybean treatments reduced marketable strawberry yields when compared with the no cover crop treatment, whereas vermicompost additions increased strawberry biomass and yields. Results from this study suggest that vermicompost additions can be important sustainable soil management strategies for transitional and certified organic strawberry production. Summer cover crops integrated with composts can provide considerable soil N, reducing fertilizer needs, but have variable responses on strawberry depending on the specific cover crop species or combination. Moreover, these practices are suitable for both organic and conventional strawberry growers and will benefit from longer-term studies that assess these practices individually and in combination and other benefits in addition to yields.


Sign in / Sign up

Export Citation Format

Share Document