Non-contact detection of impact damage in CFRP composites using millimeter-wave reflection and considering carbon fiber direction

2013 ◽  
Vol 57 ◽  
pp. 45-51 ◽  
Author(s):  
Seung-Hwan Yang ◽  
Ki-Bok Kim ◽  
Hyun Geun Oh ◽  
Jin-Seob Kang
Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 311
Author(s):  
Chan-Jung Kim

Previous studies have demonstrated the sensitivity of the dynamic behavior of carbon-fiber-reinforced plastic (CFRP) material over the carbon fiber direction by performing uniaxial excitation tests on a simple specimen. However, the variations in modal parameters (damping coefficient and resonance frequency) over the direction of carbon fiber have been partially explained in previous studies because all modal parameters have only been calculated using the representative summed frequency response function without modal analysis. In this study, the dynamic behavior of CFRP specimens was identified from experimental modal analysis and compared five CFRP specimens (carbon fiber direction: 0°, 30°, 45°, 60°, and 90°) and an isotropic SCS13A specimen using the modal assurance criterion. The first four modes were derived from the SCS13A specimen; they were used as reference modes after verifying with the analysis results from a finite element model. Most of the four mode shapes were found in all CFRP specimens, and the similarity increased when the carbon fiber direction was more than 45°. The anisotropic nature was dominant in three cases of carbon fiber, from 0° to 45°, and the most sensitive case was found in Specimen #3.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2953
Author(s):  
Hao Jiang ◽  
Caiwen Ma ◽  
Ming Li ◽  
Zhiliang Cao

Ultrafast laser drilling has been proven to effectively reduce the heat-affected zone (HAZ) of carbon fiber-reinforced polymer (CFRP) composites. However, previous research mainly focused on the effects of picosecond laser parameters on CFRP drilling. Compared with a picosecond laser, a femtosecond laser can achieve higher quality CFRP drilling due to its smaller pulse width, but there are few studies on the effects of femtosecond laser parameters on CFRP drilling. Moreover, the cross-sectional taper of CFRP produced by laser drilling is very large. This paper introduces the use of the femtosecond laser to drill cylindrical holes in CFRP. The effect of laser power, rotational speed of the laser, and number of spiral passes on HAZ and ablation depth in circular laser drilling and spiral laser drilling mode was studied, respectively. It also analyzed the forming process of the drilling depth in the spiral drilling mode and studied the influence of laser energy and drilling feed depth on the holes’ diameters and the taper. The experimental results show that the cylindrical hole of CFRP with a depth-to-diameter ratio of about 3:1 (taper < 0.32∘, HAZ < 10 m) was obtained by using femtosecond laser and a spiral drilling apparatus.


2006 ◽  
Vol 48 (2) ◽  
pp. 90-93 ◽  
Author(s):  
T J Barden ◽  
D P Almond ◽  
M Morbidini ◽  
P Cawley

Author(s):  
Wenjie Dong ◽  
Weizhao Yao ◽  
Yueyue Sun ◽  
Xuanyu Wang ◽  
Luoguo Wang ◽  
...  
Keyword(s):  

Polymers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1395 ◽  
Author(s):  
Liwei Wu ◽  
Wei Wang ◽  
Qian Jiang ◽  
Chunjie Xiang ◽  
Ching-Wen Lou

The effects of braided architecture and co-braided hybrid structure on low-velocity response of carbon-aramid hybrid three-dimensional five-directional (3D5d) braided composites were experimentally investigated in this study. Low-velocity impact was conducted on two types of hybridization and one pure carbon fiber braided reinforced composites under three velocities. Damage morphologies after low-velocity impact were detected by microscopy and ultrasonic nondestructive testing. Interior damages of composites were highly dependent on yarn type and alignment. Impact damage tolerance was introduced to evaluate the ductility of hybrid composites. Maximum impact load and toughness changed with impact velocity and constituent materials of the composites. The composite with aramid fiber as axial yarn and carbon fiber as braiding yarn showed the best impact resistance due to the synergistic effect of both materials. Wavelet transform was applied in frequency and time domain analyses to reflect the failure mode and mechanism of hybrid 3D5d braided composites. Aramid fibers were used either as axial yarns or braiding yarns, aiding in the effective decrease in the level of initial damage. In particular, when used as axial yarns, aramid fibers effectively mitigate the level of damage during damage evolution.


1989 ◽  
Vol 4 (6) ◽  
pp. 1339-1346 ◽  
Author(s):  
C. T. Ho ◽  
D. D. L. Chung

Unidirectional and continuous carbon fiber tin-matrix composites were used for the packaging of the high-temperature superconductor YBa2Cu3O7–δ by diffusion bonding at 170 °C and 500 psi. Tin served as the adhesive and to increase the ductility, the normal-state electrical conductivity, and the thermal conductivity. Carbon fibers served to increase the strength and the modulus, both in tension along the fiber direction and in compression perpendicular to the fiber layers, though they decreased the strength in compression along the fiber direction. Carbon fibers also served to increase the thermal conductivity and the thermal fatigue resistance. At 24 vol. % fibers, the tensile strength was approximately equal to the compressive strength perpendicular to the fiber layers. With further increase of the fiber content, the tensile strength exceeded the compressive strength perpendicular to the fiber layers, reaching 134 MPa at 31 vol. % fibers. For fiber contents less than 30 vol. %, the compressive ductility perpendicular to the fiber layers exceeded that of the plain superconductor. At 30 vol. % fibers, the tensile modulus reached 15 GPa at room temperature and 27 GPa at 77 K. The tensile load was essentially sustained by the carbon fibers and the superconducting behavior was maintained after tension almost to the point of tensile fracture. Neither Tc nor Jc was affected by the composite processing.


Sign in / Sign up

Export Citation Format

Share Document