scholarly journals Cracking Driving Force at the Tip of SCC under Heterogeneous Material Mechanics Model of Safe-End Dissimilar Metal-Welded Joints in PWR

2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
Yuman Sun ◽  
He Xue ◽  
Kuan Zhao ◽  
Yubiao Zhang ◽  
Youjun Zhao ◽  
...  

The complicated driving force at the stress corrosion cracking (SCC) tip of the safe-end dissimilar metal-welded joints (DMWJs) in the pressurized water reactor (PWR) is mainly caused by the heterogeneous material mechanical properties. In this research, to accurately evaluate the crack driving force at the SCC in DMWJs, the stress-strain condition, stress triaxiality, and J-integral of the crack tip at different positions are analyzed based on the heterogeneous material properties model. The results indicate that the larger driving force will be provided for the I-type crack when the crack is in the SA508 zone and the interface between the 316L region and base metal. In addition, the heterogeneous material properties inhibit the J-integral of the crack in the 316L region, which has a promoting effect when the crack is in the SA508 zone and weld metal. It provides a new idea for analyzing driving force at the crack tip and safety evaluation of DMWJs in PWRs.

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
He Xue ◽  
Yuman Sun ◽  
Shun Zhang ◽  
Rehmat Bashir ◽  
Youjun Zhao ◽  
...  

The mechanical characteristic at the crack tip is one of the main factors affecting the stress corrosion cracking (SCC) in dissimilar metal welded joints (DMWJs). In this research, to evaluate the effect of heterogeneous material properties on the mechanical characteristic at the crack tip of DMWJs accurately, a heterogeneous material model of the SA508 Cl.3-Alloy 52M DMWJ was established based on USDFLD subroutine in ABAQUS. The comparison of the traditional “Sandwich” material model with the heterogeneous material properties, stress-strain conditions, and the plastic zone around the crack tip at the interference zone has been analyzed by the finite element method (FEM). The results indicated that the heterogeneous material model could characterize the mechanical properties of the SA508 Cl.3-Alloy 52M DMWJs accurately. In addition, the crack at the interface zone between materials will deflect along with the weld metal in two material models.


2018 ◽  
Vol 165 ◽  
pp. 09002
Author(s):  
Désiré Tchoffo Ngoula ◽  
Michael Vormwald

The purpose of the present contribution is to predict the fatigue life of welded joints by using the effective cyclic J-integral as crack driving force. The plasticity induced crack closure effects and the effects of welding residual stresses are taken into consideration. Here, the fatigue life is regarded as period of short fatigue crack growth. The node release technique is used to perform finite element based crack growth analyses. For fatigue lives calculations, the effective cyclic J-integral is employed in a relation similar to the Paris (crack growth) equation. For this purpose, a specific code was written for the determination of the effective cyclic J-integral for various lifetime relevant crack lengths. The effects of welding residual stresses on the crack driving force and the calculated fatigue lives are investigated. Results reveal that the influence of residual stresses can be neglected only for large load amplitudes. Finally, the predicted fatigue lives are compared with experimental data: a good accordance between both results is achieved.


2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
He Xue ◽  
Yueqi Bi ◽  
Shuai Wang ◽  
Jianlong Zhang ◽  
Siyu Gou

For the problem of mechanical properties of heterogeneous dissimilar metal welded joints, when analyzed by the finite element method, it is usually simplified into a “sandwich” material structure model. However, the mechanical properties of materials in different regions of the “sandwich” material mechanics model are different, and there will be mutations at the material interface. In order to accurately describe the mechanical properties of welded joints, the constitutive equations of dissimilar metal welded joint materials were compiled, and the constitutive equations of inhomogeneous materials whose material mechanical properties were continuously changed with space coordinates were established. The ABAQUS software was used to establish the “sandwich” model and the continuous transition model. The model is used to compare and analyze the crack tip stress distribution of different yield strength mismatch coefficients. The results show that the continuous transition material model eliminates the mutation of the “sandwich” model at the material interface and achieves the continuous change of the mechanical properties of the material. For the longitudinal crack, under the influence of different mismatch coefficients, the crack tip stress field of the transitional material model is deflected toward the low yield strength side. The compilation of constitutive equations for continuous transition materials of dissimilar metal welded joints provides a basis for the safety evaluation of dissimilar metal welded joints.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4450
Author(s):  
Shun Zhang ◽  
He Xue ◽  
Shuai Wang ◽  
Yuman Sun ◽  
Fuqiang Yang ◽  
...  

The crack tip strain and stress condition are one of the main factors affecting stress corrosion cracking (SCC) behaviors in the dissimilar metal welded joint of the primary circuit in the pressurized water reactor. The mechanical property mismatch of base metal and weld metal can significantly affect the stress and strain condition around the crack tip. To understand the effect of different weld metals on strain and stress fields at SCC crack tips, the effects of strength mismatch, work hardening mismatch, and their synergy on the strain and stress field of SCC in the bi-material interface, including plastic zone, stress state, and corresponding J-integral, are investigated in small-scale yielding using the finite element method. The results show a significant effect of the strength mismatch and work hardening mismatch on the plastic zone and stress state in the weld metal and a negligible effect in the base metal. J-integral decreases with the single increase in either strength mismatch or work hardening mismatch. Either the increase in strength mismatch or work hardening mismatch will inhibit the other’s effect on the J-integral, and a synthetic mismatch factor can express this synergistic effect.


Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 4001 ◽  
Author(s):  
Presno Vélez ◽  
Sánchez ◽  
Menéndez Fernández ◽  
Fernández Muñiz

The increasingly mechanical requirements of offshore structures have established the relevance of fracture mechanics-based quality control in welded joints. For this purpose, crack tip opening displacement (CTOD) at a given distance from the crack tip has been considered one of the most suited parameters for modeling and control of crack growth, and it is broadly used at the industrial level. We have modeled, through multivariate analysis techniques, the relationships among CTOD values and other material properties (such as hardness, chemical composition, toughness, and microstructural morphology) in high-thickness offshore steel welded joints. In order to create this model, hundreds of tests were done on 72 real samples, which were welded with a wide range of real industrial parameters. The obtained results were processed and evaluated with different multivariate techniques, and we established the significance of all the chosen explanatory variables and the good predictive capability of the CTOD tests within the limits of the experimental variation. By establishing the use of this model, significant savings can be achieved in the manufacturing of wind generators, as CTOD tests are more expensive and complex than the proposed alternatives. Additionally, this model allows for some technical conclusions.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 592
Author(s):  
Feng Yue ◽  
Ziyan Wu

The fracture mechanical behaviour of thin-walled structures with cracks is highly significant for structural strength design, safety and reliability analysis, and defect evaluation. In this study, the effects of various factors on the fracture parameters, crack initiation angles and plastic zones of thin-walled cylindrical shells with cracks are investigated. First, based on the J-integral and displacement extrapolation methods, the stress intensity factors of thin-walled cylindrical shells with circumferential cracks and compound cracks are studied using linear elastic fracture mechanics, respectively. Second, based on the theory of maximum circumferential tensile stress of compound cracks, the number of singular elements at a crack tip is varied to determine the node of the element corresponding to the maximum circumferential tensile stress, and the initiation angle for a compound crack is predicted. Third, based on the J-integral theory, the size of the plastic zone and J-integral of a thin-walled cylindrical shell with a circumferential crack are analysed, using elastic-plastic fracture mechanics. The results show that the stress in front of a crack tip does not increase after reaching the yield strength and enters the stage of plastic development, and the predicted initiation angle of an oblique crack mainly depends on its original inclination angle. The conclusions have theoretical and engineering significance for the selection of the fracture criteria and determination of the failure modes of thin-walled structures with cracks.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4145
Author(s):  
He Xue ◽  
Zheng Wang ◽  
Shuai Wang ◽  
Jinxuan He ◽  
Hongliang Yang

Dissimilar metal welded joints (DMWJs) possess significant localized mechanical heterogeneity. Using finite element software ABAQUS with the User-defined Material (UMAT) subroutine, this study proposed a constitutive equation that may be used to express the heterogeneous mechanical properties of the heat-affected and fusion zones at the interfaces in DMWJs. By eliminating sudden stress changes at the material interfaces, the proposed approach provides a more realistic and accurate characterization of the mechanical heterogeneity in the local regions of DMWJs than existing methods. As such, the proposed approach enables the structural integrity of DMWJs to be analyzed in greater detail.


2016 ◽  
Vol 853 ◽  
pp. 281-285
Author(s):  
Jun Hui Zhang ◽  
Yan Wei Dai

Creep crack within weldments are very common in engineering practices, and the cracking location in these welding structures always appears at the HAZ location. The mismatch effect on the mixed mode creep crack is still not clear in these available literatures. The aim of this paper is to investigate the mismatch influence on the creep crack of mixed mode thoroughly. A mixed mode creep crack within HAZ is established in this paper. The leading factor that dominates the creep crack tip field under mixed loading mode is studied. The influences of mismatch effect on mode mixity, stress distribution and stress triaxiality are proposed. The difference of mixed mode creep crack and normal mode I or mode II creep crack are compared. The influence of mixity factor on the transient and steady state creep of crack tip are also analyzed.


Sign in / Sign up

Export Citation Format

Share Document