Predicting the quality of online health expert question-answering services with temporal features in a deep learning framework

2018 ◽  
Vol 275 ◽  
pp. 2769-2782 ◽  
Author(s):  
Ze Hu ◽  
Zhan Zhang ◽  
Haiqin Yang ◽  
Qing Chen ◽  
Rong Zhu ◽  
...  
2017 ◽  
Vol 71 ◽  
pp. 241-253 ◽  
Author(s):  
Ze Hu ◽  
Zhan Zhang ◽  
Haiqin Yang ◽  
Qing Chen ◽  
Decheng Zuo

2020 ◽  
Vol 8 ◽  
Author(s):  
Adil Khadidos ◽  
Alaa O. Khadidos ◽  
Srihari Kannan ◽  
Yuvaraj Natarajan ◽  
Sachi Nandan Mohanty ◽  
...  

In this paper, a data mining model on a hybrid deep learning framework is designed to diagnose the medical conditions of patients infected with the coronavirus disease 2019 (COVID-19) virus. The hybrid deep learning model is designed as a combination of convolutional neural network (CNN) and recurrent neural network (RNN) and named as DeepSense method. It is designed as a series of layers to extract and classify the related features of COVID-19 infections from the lungs. The computerized tomography image is used as an input data, and hence, the classifier is designed to ease the process of classification on learning the multidimensional input data using the Expert Hidden layers. The validation of the model is conducted against the medical image datasets to predict the infections using deep learning classifiers. The results show that the DeepSense classifier offers accuracy in an improved manner than the conventional deep and machine learning classifiers. The proposed method is validated against three different datasets, where the training data are compared with 70%, 80%, and 90% training data. It specifically provides the quality of the diagnostic method adopted for the prediction of COVID-19 infections in a patient.


Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1394 ◽  
Author(s):  
Jiaohua Qin ◽  
Jing Wang ◽  
Yun Tan ◽  
Huajun Huang ◽  
Xuyu Xiang ◽  
...  

Traditional image steganography needs to modify or be embedded into the cover image for transmitting secret messages. However, the distortion of the cover image can be easily detected by steganalysis tools which lead the leakage of the secret message. So coverless steganography has become a topic of research in recent years, which has the advantage of hiding secret messages without modification. But current coverless steganography still has problems such as low capacity and poor quality .To solve these problems, we use a generative adversarial network (GAN), an effective deep learning framework, to encode secret messages into the cover image and optimize the quality of the steganographic image by adversaring. Experiments show that our model not only achieves a payload of 2.36 bits per pixel, but also successfully escapes the detection of steganalysis tools.


Sensors ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 1356 ◽  
Author(s):  
Jun Zhang ◽  
ZhongCheng Wu ◽  
Fang Li ◽  
Chengjun Xie ◽  
Tingting Ren ◽  
...  

Human driving behaviors are personalized and unique, and the automobile fingerprint of drivers could be helpful to automatically identify different driving behaviors and further be applied in fields such as auto-theft systems. Current research suggests that in-vehicle Controller Area Network-BUS (CAN-BUS) data can be used as an effective representation of driving behavior for recognizing different drivers. However, it is difficult to capture complex temporal features of driving behaviors in traditional methods. This paper proposes an end-to-end deep learning framework by fusing convolutional neural networks and recurrent neural networks with an attention mechanism, which is more suitable for time series CAN-BUS sensor data. The proposed method can automatically learn features of driving behaviors and model temporal features without professional knowledge in features modeling. Moreover, the method can capture salient structure features of high-dimensional sensor data and explore the correlations among multi-sensor data for rich feature representations of driving behaviors. Experimental results show that the proposed framework performs well in the real world driving behavior identification task, outperforming the state-of-the-art methods.


2020 ◽  
Vol 71 (7) ◽  
pp. 868-880
Author(s):  
Nguyen Hong-Quan ◽  
Nguyen Thuy-Binh ◽  
Tran Duc-Long ◽  
Le Thi-Lan

Along with the strong development of camera networks, a video analysis system has been become more and more popular and has been applied in various practical applications. In this paper, we focus on person re-identification (person ReID) task that is a crucial step of video analysis systems. The purpose of person ReID is to associate multiple images of a given person when moving in a non-overlapping camera network. Many efforts have been made to person ReID. However, most of studies on person ReID only deal with well-alignment bounding boxes which are detected manually and considered as the perfect inputs for person ReID. In fact, when building a fully automated person ReID system the quality of the two previous steps that are person detection and tracking may have a strong effect on the person ReID performance. The contribution of this paper are two-folds. First, a unified framework for person ReID based on deep learning models is proposed. In this framework, the coupling of a deep neural network for person detection and a deep-learning-based tracking method is used. Besides, features extracted from an improved ResNet architecture are proposed for person representation to achieve a higher ReID accuracy. Second, our self-built dataset is introduced and employed for evaluation of all three steps in the fully automated person ReID framework.


2020 ◽  
Author(s):  
Saeed Nosratabadi ◽  
Amir Mosavi ◽  
Puhong Duan ◽  
Pedram Ghamisi ◽  
Ferdinand Filip ◽  
...  

This paper provides a state-of-the-art investigation of advances in data science in emerging economic applications. The analysis was performed on novel data science methods in four individual classes of deep learning models, hybrid deep learning models, hybrid machine learning, and ensemble models. Application domains include a wide and diverse range of economics research from the stock market, marketing, and e-commerce to corporate banking and cryptocurrency. Prisma method, a systematic literature review methodology, was used to ensure the quality of the survey. The findings reveal that the trends follow the advancement of hybrid models, which, based on the accuracy metric, outperform other learning algorithms. It is further expected that the trends will converge toward the advancements of sophisticated hybrid deep learning models.


2020 ◽  
Author(s):  
Raniyaharini R ◽  
Madhumitha K ◽  
Mishaa S ◽  
Virajaravi R

2020 ◽  
Author(s):  
Jinseok Lee

BACKGROUND The coronavirus disease (COVID-19) has explosively spread worldwide since the beginning of 2020. According to a multinational consensus statement from the Fleischner Society, computed tomography (CT) can be used as a relevant screening tool owing to its higher sensitivity for detecting early pneumonic changes. However, physicians are extremely busy fighting COVID-19 in this era of worldwide crisis. Thus, it is crucial to accelerate the development of an artificial intelligence (AI) diagnostic tool to support physicians. OBJECTIVE We aimed to quickly develop an AI technique to diagnose COVID-19 pneumonia and differentiate it from non-COVID pneumonia and non-pneumonia diseases on CT. METHODS A simple 2D deep learning framework, named fast-track COVID-19 classification network (FCONet), was developed to diagnose COVID-19 pneumonia based on a single chest CT image. FCONet was developed by transfer learning, using one of the four state-of-art pre-trained deep learning models (VGG16, ResNet50, InceptionV3, or Xception) as a backbone. For training and testing of FCONet, we collected 3,993 chest CT images of patients with COVID-19 pneumonia, other pneumonia, and non-pneumonia diseases from Wonkwang University Hospital, Chonnam National University Hospital, and the Italian Society of Medical and Interventional Radiology public database. These CT images were split into a training and a testing set at a ratio of 8:2. For the test dataset, the diagnostic performance to diagnose COVID-19 pneumonia was compared among the four pre-trained FCONet models. In addition, we tested the FCONet models on an additional external testing dataset extracted from the embedded low-quality chest CT images of COVID-19 pneumonia in recently published papers. RESULTS Of the four pre-trained models of FCONet, the ResNet50 showed excellent diagnostic performance (sensitivity 99.58%, specificity 100%, and accuracy 99.87%) and outperformed the other three pre-trained models in testing dataset. In additional external test dataset using low-quality CT images, the detection accuracy of the ResNet50 model was the highest (96.97%), followed by Xception, InceptionV3, and VGG16 (90.71%, 89.38%, and 87.12%, respectively). CONCLUSIONS The FCONet, a simple 2D deep learning framework based on a single chest CT image, provides excellent diagnostic performance in detecting COVID-19 pneumonia. Based on our testing dataset, the ResNet50-based FCONet might be the best model, as it outperformed other FCONet models based on VGG16, Xception, and InceptionV3.


Sign in / Sign up

Export Citation Format

Share Document