Insulin signaling pathway and related molecules: Role in neurodegeneration and Alzheimer's disease

2020 ◽  
Vol 135 ◽  
pp. 104707 ◽  
Author(s):  
Ansab Akhtar ◽  
Sangeeta Pilkhwal Sah
Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2268
Author(s):  
Dina Medina-Vera ◽  
Juan Antonio Navarro ◽  
Rubén Tovar ◽  
Cristina Rosell-Valle ◽  
Alfonso Gutiérrez-Adan ◽  
...  

D-Pinitol (DPIN) is a natural occurring inositol capable of activating the insulin pathway in peripheral tissues, whereas this has not been thoroughly studied in the central nervous system. The present study assessed the potential regulatory effects of DPIN on the hypothalamic insulin signaling pathway. To this end we investigated the Phosphatidylinositol-3-kinase (PI3K)/Protein Kinase B (Akt) signaling cascade in a rat model following oral administration of DPIN. The PI3K/Akt-associated proteins were quantified by Western blot in terms of phosphorylation and total expression. Results indicate that the acute administration of DPIN induced time-dependent phosphorylation of PI3K/Akt and its related substrates within the hypothalamus, indicating an activation of the insulin signaling pathway. This profile is consistent with DPIN as an insulin sensitizer since we also found a decrease in the circulating concentration of this hormone. Overall, the present study shows the pharmacological action of DPIN in the hypothalamus through the PI3K/Akt pathway when giving in fasted animals. These findings suggest that DPIN might be a candidate to treat brain insulin-resistance associated disorders by activating insulin response beyond the insulin receptor.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1236
Author(s):  
Jesús Burillo ◽  
Patricia Marqués ◽  
Beatriz Jiménez ◽  
Carlos González-Blanco ◽  
Manuel Benito ◽  
...  

Type 2 diabetes mellitus is a progressive disease that is characterized by the appearance of insulin resistance. The term insulin resistance is very wide and could affect different proteins involved in insulin signaling, as well as other mechanisms. In this review, we have analyzed the main molecular mechanisms that could be involved in the connection between type 2 diabetes and neurodegeneration, in general, and more specifically with the appearance of Alzheimer’s disease. We have studied, in more detail, the different processes involved, such as inflammation, endoplasmic reticulum stress, autophagy, and mitochondrial dysfunction.


2010 ◽  
Vol 6 ◽  
pp. S386-S386
Author(s):  
Cheng-Xin Gong ◽  
Ying Liu ◽  
Yanqiu Deng ◽  
Fei Liu ◽  
Inge Grundke-Iqbal ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document