A yellow fluorescent protein-based assay for high-throughput screening of glycine and GABAA receptor chloride channels

2005 ◽  
Vol 380 (3) ◽  
pp. 340-345 ◽  
Author(s):  
Wade Kruger ◽  
Daniel Gilbert ◽  
Rebecca Hawthorne ◽  
Deanne H. Hryciw ◽  
Stephan Frings ◽  
...  
2019 ◽  
Vol 116 (39) ◽  
pp. 19541-19551
Author(s):  
Meade Haller ◽  
Yan Yin ◽  
Liang Ma

Failure of embryo implantation accounts for a significant percentage of female infertility. Exquisitely coordinated molecular programs govern the interaction between the competent blastocyst and the receptive uterus. Decidualization, the rapid proliferation and differentiation of endometrial stromal cells into decidual cells, is required for implantation. Decidualization defects can cause poor placentation, intrauterine growth restriction, and early parturition leading to preterm birth. Decidualization has not yet been systematically studied at the genetic level due to the lack of a suitable high-throughput screening tool. Herein we describe the generation of an immortalized human endometrial stromal cell line that uses yellow fluorescent protein under the control of the prolactin promoter as a quantifiable visual readout of the decidualization response (hESC-PRLY cells). Using this cell line, we performed a genome-wide siRNA library screen, as well as a screen of 910 small molecules, to identify more than 4,000 previously unrecognized genetic and chemical modulators of decidualization. Ontology analysis revealed several groups of decidualization modulators, including many previously unappreciated transcription factors, sensory receptors, growth factors, and kinases. Expression studies of hits revealed that the majority of decidualization modulators are acutely sensitive to ovarian hormone exposure. Gradient treatment of exogenous factors was used to identify EC50 values of small-molecule hits, as well as verify several growth factor hits identified by the siRNA screen. The high-throughput decidualization reporter cell line and the findings described herein will aid in the development of patient-specific treatments for decidualization-based recurrent pregnancy loss, subfertility, and infertility.


2008 ◽  
Vol 14 (1) ◽  
pp. 86-91 ◽  
Author(s):  
Daniel Gilbert ◽  
Abolghasem Esmaeili ◽  
Joseph W. Lynch

Despite being important clinical targets, it is not straightforward to reliably express recombinant trimeric αβγ GABA-A receptors (GABAARs) for high-throughput screening. This study therefore sought to devise a simple and reliable means of transiently expressing α1β1γ1 and α1β1γ2 GABAARs in HEK293 cells. Expression efficiencies resulting from 5 different transfection strategies were assessed by flow cytometry and pharmacological analysis using an anion-sensitive yellow fluorescent protein-based assay. PolyFect™ and Effectene™, employed according to the manufacturers' instructions, conferred the strongest and most reliable expression of trimeric αβγ GABAARs. Functional analysis via the yellow fluorescent protein assay revealed dramatic differences in the pharmacological properties of γ1- and γ2-containing receptors, consistent with previous electrophysiological characterizations. The authors conclude that this method of expressing and screening recombinant GABAARs provides an effective means of discovering novel GABAAR modulators for use as therapeutic lead compounds and pharmacological probes. ( Journal of Biomolecular Screening 2009:86-91)


2020 ◽  
Author(s):  
Martin L. Read ◽  
Katie Brookes ◽  
Caitlin E.M. Thornton ◽  
Alice Fletcher ◽  
Mohammed Alshahrani ◽  
...  

ABSTRACTNew combinatorial drug strategies are urgently needed to improve radioiodide (RAI) uptake and efficiently ablate thyroid cancer cells, thereby addressing recurrent and metastatic disease. Cellular iodide uptake is accomplished solely by the sodium iodide symporter (NIS), but the complexity of NIS functional regulation and a lack of amenable high-throughput screening assays has impeded progress. We utilised mutated yellow fluorescent protein (YFP) as a surrogate biosensor of intracellular iodide for ∼1200 FDA-approved drugs, allowing us to appraise the impact of 73 leading compounds at 10 doses on 125I uptake in thyroid cancer cell lines. Subsequent mechanistic analysis suggests three predominant modes of drug action: Firstly, a number of drugs inhibited specific regulation of NIS function by the protein VCP. Secondly, some drugs enhanced transcriptional or post-transcriptional regulation of NIS expression. Thirdly, several drugs strongly implicated proteasomal degradation and the unfolded protein response in the cellular processing of NIS. Exploiting these mechanistic insights, multiple compounds gave striking increases in radioiodide uptake when combined with the drug SAHA. Importantly, our new drug combination strategies were also effective in human primary thyrocytes, suggesting they target endogenous NIS physiology. In patients with papillary thyroid cancer, genes involved in proteostasis were remarkably altered and predicted significantly worse outcome, but only in those patients who received RAI therapy. Collectively, we therefore propose a new model of intracellular NIS processing, and identify key nodes which may now be druggable in patients with aggressive thyroid cancer.SUMMARYOur data identify FDA-approved drugs that enhance radioiodide uptake outside of the canonical pathways of NIS processing, leading to a new mechanistic understanding of endogenous NIS function which is subverted in cancer.


2019 ◽  
Author(s):  
André Alcântara ◽  
Denise Seitner ◽  
Fernando Navarrete ◽  
Armin Djamei

AbstractBackgroundThe unfolded protein response (UPR) is a highly conserved process in eukaryotic organisms that plays a crucial role in adaptation and development. While the most ubiquitous components of this pathway have been characterized, current efforts are focused on identifying and characterizing other UPR factors that play a role in specific conditions, such as developmental changes, abiotic cues, and biotic interactions. Considering the central role of protein secretion in plant pathogen interactions, there has also been a recent focus on understanding how pathogens manipulate their host’s UPR to facilitate infection.ResultsWe developed a high-throughput screening assay to identify proteins that interfere with UPR signalingin planta. A set of 35 genes from a library of secreted proteins from the maize pathogenUstilago maydiswere transiently co-expressed with a reporter construct that upregulates enhanced yellow fluorescent protein (eYFP) expression upon UPR stress inNicotiana benthamianaplants. After UPR stress induction, leaf discs were placed in 96 well plates and eYFP expression was measured. This allowed us to identify a previously undescribed fungal protein that inhibits plant UPR signaling, which was then confirmed using the classical but more laborious qRT-PCR method.ConclusionsWe have established a rapid and reliable fluorescence-based method to identify heterologously expressed proteins involved in UPR stress in plants. This system can be used for initial screens with libraries of proteins and potentially other molecules to identify candidates for further validation and characterization.


2021 ◽  
Vol 22 (13) ◽  
pp. 7100
Author(s):  
Yohan Seo ◽  
Sung Baek Jeong ◽  
Joo Han Woo ◽  
Oh-Bin Kwon ◽  
Sion Lee ◽  
...  

Non-small cell lung cancer (NSCLC) is one of the leading causes of cancer-related mortality; thus, therapeutic targets continue to be developed. Anoctamin1 (ANO1), a novel drug target considered for the treatment of NSCLC, is a Ca2+-activated chloride channel (CaCC) overexpressed in various carcinomas. It plays an important role in the development of cancer; however, the role of ANO1 in NSCLC is unclear. In this study, diethylstilbestrol (DES) was identified as a selective ANO1 inhibitor using high-throughput screening. We found that DES inhibited yellow fluorescent protein (YFP) fluorescence reduction caused by ANO1 activation but did not inhibit cystic fibrosis transmembrane conductance regulator channel activity or P2Y activation-related cytosolic Ca2+ levels. Additionally, electrophysiological analyses showed that DES significantly reduced ANO1 channel activity, but it more potently reduced ANO1 protein levels. DES also inhibited the viability and migration of PC9 cells via the reduction in ANO1, phospho-ERK1/2, and phospho-EGFR levels. Moreover, DES induced apoptosis by increasing caspase-3 activity and PARP-1 cleavage in PC9 cells, but it did not affect the viability of hepatocytes. These results suggest that ANO1 is a crucial target in the treatment of NSCLC, and DES may be developed as a potential anti-NSCLC therapeutic agent.


2021 ◽  
Author(s):  
Jay D. Evans ◽  
Olubukola Banmeke ◽  
Evan C. Palmer-Young ◽  
Yanping Chen ◽  
Eugene V. Ryabov

ABSTRACTHoney bees face numerous pests and pathogens but arguably none are as devastating as Deformed wing virus (DWV). Development of antiviral therapeutics and virus-resistant honey bee lines to control DWV in honey bees is slowed by the lack of a cost-effective high-throughput screening of DWV infection. Currently, analysis of virus infection and screening for antiviral treatments in bees and their colonies is tedious, requiring a well-equipped molecular biology laboratory and the use of hazardous chemicals. Here we utilize a cDNA clone of DWV tagged with green fluorescent protein (GFP) to develop the Beeporter assay, a method for detection and quantification of DWV infection in live honey bees. The assay involves infection of honey bee pupae by injecting a standardized DWV-GFP inoculum, followed by incubation for up to 44 hours. GFP fluorescence is recorded at intervals via commonly available long-wave UV light sources and a smartphone camera or a standard ultraviolet transilluminator gel imaging system. Nonlethal DWV monitoring allows high-throughput screening of antiviral candidates and a direct breeding tool for identifying honey bee parents with increased antivirus resistance. For even more rapid drug screening, we also describe a method for screening bees using 96-well trays and a spectrophotometer.


Inventions ◽  
2019 ◽  
Vol 4 (4) ◽  
pp. 72
Author(s):  
Ryota Sawaki ◽  
Daisuke Sato ◽  
Hiroko Nakayama ◽  
Yuki Nakagawa ◽  
Yasuhito Shimada

Background: Zebrafish are efficient animal models for conducting whole organism drug testing and toxicological evaluation of chemicals. They are frequently used for high-throughput screening owing to their high fecundity. Peripheral experimental equipment and analytical software are required for zebrafish screening, which need to be further developed. Machine learning has emerged as a powerful tool for large-scale image analysis and has been applied in zebrafish research as well. However, its use by individual researchers is restricted due to the cost and the procedure of machine learning for specific research purposes. Methods: We developed a simple and easy method for zebrafish image analysis, particularly fluorescent labelled ones, using the free machine learning program Google AutoML. We performed machine learning using vascular- and macrophage-Enhanced Green Fluorescent Protein (EGFP) fishes under normal and abnormal conditions (treated with anti-angiogenesis drugs or by wounding the caudal fin). Then, we tested the system using a new set of zebrafish images. Results: While machine learning can detect abnormalities in the fish in both strains with more than 95% accuracy, the learning procedure needs image pre-processing for the images of the macrophage-EGFP fishes. In addition, we developed a batch uploading software, ZF-ImageR, for Windows (.exe) and MacOS (.app) to enable high-throughput analysis using AutoML. Conclusions: We established a protocol to utilize conventional machine learning platforms for analyzing zebrafish phenotypes, which enables fluorescence-based, phenotype-driven zebrafish screening.


2003 ◽  
Vol 47 (1) ◽  
pp. 309-316 ◽  
Author(s):  
Marc-Jan Gubbels ◽  
Catherine Li ◽  
Boris Striepen

ABSTRACT A high-throughput growth assay for the protozoan parasite Toxoplasma gondii was developed based on a highly fluorescent transgenic parasite line. These parasites are stably transfected with a tandem yellow fluorescent protein (YFP) and are 1,000 times more fluorescent than the wild type. Parasites were inoculated in optical-bottom 384-well culture plates containing a confluent monolayer of host cells, and growth was monitored by using a fluorescence plate reader. The signal was linearly correlated with parasite numbers over a wide array. Direct comparison of the YFP growth assay with the β-galactosidase growth assay by using parasites expressing both reporters demonstrated that the assays' sensitivities were comparable but that the accuracy of the YFP assay was higher, especially at higher numbers of parasites per well. Determination of the 50%-inhibitory concentrations of three known growth-inhibiting drugs (cytochalasin D, pyrimethamine, and clindamycin) resulted in values comparable to published data. The delayed parasite death kinetics of clindamycin could be measured without modification of the assay, making this assay very versatile. Additionally, the temperature-dependent effect of pyrimethamine was assayed in both wild-type and engineered drug-resistant parasites. Lastly, the development of mycophenolic acid resistance after transfection of a resistance gene in T. gondii was followed. In conclusion, the YFP growth assay limits pipetting steps to a minimum, is highly versatile and amendable to automation, and should enable rapid screening of compounds to fulfill the need for more efficient and less toxic antiparasitic drugs.


Sign in / Sign up

Export Citation Format

Share Document