scholarly journals A High-throughput Screening Method to Identify Proteins Involved in Unfolded Protein Response Signaling in Plants

2019 ◽  
Author(s):  
André Alcântara ◽  
Denise Seitner ◽  
Fernando Navarrete ◽  
Armin Djamei

AbstractBackgroundThe unfolded protein response (UPR) is a highly conserved process in eukaryotic organisms that plays a crucial role in adaptation and development. While the most ubiquitous components of this pathway have been characterized, current efforts are focused on identifying and characterizing other UPR factors that play a role in specific conditions, such as developmental changes, abiotic cues, and biotic interactions. Considering the central role of protein secretion in plant pathogen interactions, there has also been a recent focus on understanding how pathogens manipulate their host’s UPR to facilitate infection.ResultsWe developed a high-throughput screening assay to identify proteins that interfere with UPR signalingin planta. A set of 35 genes from a library of secreted proteins from the maize pathogenUstilago maydiswere transiently co-expressed with a reporter construct that upregulates enhanced yellow fluorescent protein (eYFP) expression upon UPR stress inNicotiana benthamianaplants. After UPR stress induction, leaf discs were placed in 96 well plates and eYFP expression was measured. This allowed us to identify a previously undescribed fungal protein that inhibits plant UPR signaling, which was then confirmed using the classical but more laborious qRT-PCR method.ConclusionsWe have established a rapid and reliable fluorescence-based method to identify heterologously expressed proteins involved in UPR stress in plants. This system can be used for initial screens with libraries of proteins and potentially other molecules to identify candidates for further validation and characterization.

2012 ◽  
Vol 18 (2) ◽  
pp. 191-198 ◽  
Author(s):  
Keiko Tsuganezawa ◽  
Yukari Nakagawa ◽  
Miki Kato ◽  
Shigenao Taruya ◽  
Fumio Takahashi ◽  
...  

A fluorescent-based high-throughput screening (HTS) assay for small molecules that inhibit the interaction of MdmX with p53 was developed and applied to identify new inhibitors. The assay evaluated the MdmX-p53 interaction by detecting the quenching of the fluorescence of green fluorescent protein (GFP) fused to the MdmX protein, after its interaction with a p53 peptide labeled with a fluorescence quencher. In this report, the developed HTS assay was applied to about 40 000 compounds, and 255 hit compounds that abrogated the GFP quenching were selected. Next, the obtained hits were reevaluated by other assays. First, their effects on the diffusion time of a fluorescently-labeled p53 peptide after incubation with the MdmX protein were tested by measuring the diffusion time using fluorescence correlation spectroscopy, and six stable hit compounds with IC50 values less than 5 µM were selected. Next, we further confirmed their inhibition of the MdmX-p53 interaction by surface plasmon resonance. To indicate the efficacy of the hit compound as a candidate anticancer drug, we showed that the hit compound triggered apoptosis after p53 and p21 accumulation in cultured MV4;11 leukemia cells. Thus, the new HTS assay is effective for obtaining novel MdmX-p53 interaction inhibitors that are valuable as candidate compounds for cancer treatment.


2011 ◽  
Vol 16 (8) ◽  
pp. 825-835 ◽  
Author(s):  
Andrew M. Fribley ◽  
Patricia G. Cruz ◽  
Justin R. Miller ◽  
Michael U. Callaghan ◽  
Peter Cai ◽  
...  

Despite advances toward understanding the prevention and treatment of many cancers, patients who suffer from oral squamous cell carcinoma (OSCC) confront a survival rate that has remained unimproved for more than 2 decades, indicating our ability to treat them pharmacologically has reached a plateau. In an ongoing effort to improve the clinical outlook for this disease, we previously reported that an essential component of the mechanism by which the proteasome inhibitor bortezomib (PS-341, Velcade) induced apoptosis in OSCC required the activation of a terminal unfolded protein response (UPR). Predicated on these studies, the authors hypothesized that high-throughput screening (HTS) of large diverse chemical libraries might identify more potent or selective small-molecule activators of the apoptotic arm of the UPR to control or kill OSCC. They have developed complementary cell-based assays using stably transfected CHO-K1 cell lines that individually assess the PERK/eIF2α/CHOP (apoptotic) or the IRE1/XBP1 (adaptive) UPR subpathways. An ˜66 K compound collection was screened at the University of Michigan Center for Chemical Genomics that included a unique library of prefractionated natural product extracts. The mycotoxin methoxycitrinin was isolated from a natural extract and found to selectively activate the CHOP-luciferase reporter at 80 µM. A series of citrinin derivatives was isolated from these extracts, including a unique congener that has not been previously described. In an effort to identify more potent compounds, the authors examined the ability of citrinin and the structurally related mycotoxins ochratoxin A and patulin to activate the UPR. Strikingly, it was found that patulin at 2.5 to 10 µM induced a terminal UPR in a panel of OSCC cells that was characterized by an increase in CHOP, GADD34, and ATF3 gene expression and XBP1 splicing. A luminescent caspase assay and the induction of several BH3-only genes indicated that patulin could induce apoptosis in OSCC cells. These data support the use of this complementary HTS strategy to identify novel modulators of UPR signaling and tumor cell death.


2020 ◽  
Vol 25 (9) ◽  
pp. 1064-1071
Author(s):  
Maikel Izquierdo ◽  
De Lin ◽  
Sandra O’Neill ◽  
Martin Zoltner ◽  
Lauren Webster ◽  
...  

Leucyl aminopeptidases (LAPs) are involved in multiple cellular functions, which, in the case of infectious diseases, includes participation in the pathogen-host cell interface and pathogenesis. Thus, LAPs are considered good candidate drug targets, and the major M17-LAP from Trypanosoma cruzi (LAPTc) in particular is a promising target for Chagas disease. To exploit LAPTc as a potential target, it is essential to develop potent and selective inhibitors. To achieve this, we report a high-throughput screening method for LAPTc. Two methods were developed and optimized: a Leu-7-amido-4-methylcoumarin–based fluorogenic assay and a RapidFire mass spectrometry (RapidFire MS)–based assay using the LSTVIVR peptide as substrate. Compared with a fluorescence assay, the major advantages of the RapidFire MS assay are a greater signal-to-noise ratio as well as decreased consumption of enzyme. RapidFire MS was validated with the broad-spectrum LAP inhibitors bestatin (IC50 = 0.35 μM) and arphamenine A (IC50 = 15.75 μM). We suggest that RapidFire MS is highly suitable for screening for specific LAPTc inhibitors.


2012 ◽  
Vol 18 (3) ◽  
pp. 298-308 ◽  
Author(s):  
Yvette Newbatt ◽  
Anthea Hardcastle ◽  
P. Craig McAndrew ◽  
Jade A. Strover ◽  
Amin Mirza ◽  
...  

Inositol-requiring enzyme 1 alpha (IRE1α) is a transmembrane sensor protein with both kinase and ribonuclease activity, which plays a crucial role in the unfolded protein response (UPR). Protein misfolding in the endoplasmic reticulum (ER) lumen triggers dimerization and subsequent trans-autophosphorylation of IRE1α. This leads to the activation of its endoribonuclease (RNase) domain and splicing of the mRNA of the transcriptional activator XBP1, ultimately generating an active XBP1 (XBP1s) implicated in multiple myeloma survival. Previously, we have identified human IRE1α as a target for the development of kinase inhibitors that could modulate the UPR in human cells, which has particular relevance for multiple myeloma and other secretory malignancies. Here we describe the development and validation of a 384-well high-throughput screening assay using DELFIA technology that is specific for IRE1α autophosphorylation. Using this format, a focused library of 2312 potential kinase inhibitors was screened, and several novel IRE1α kinase inhibitor scaffolds were identified that could potentially be developed toward new therapies to treat multiple myeloma.


2018 ◽  
Vol 20 (9) ◽  
pp. 804-819 ◽  
Author(s):  
Mohamed Boudjelal ◽  
Ana Maria Ruiz-Avendano ◽  
Gonzalo Colmenarejo ◽  
Sergio A. Senar-Sancho ◽  
Ashley Barnes ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Sadaf Kalsum ◽  
Blanka Andersson ◽  
Jyotirmoy Das ◽  
Thomas Schön ◽  
Maria Lerm

Abstract Background Efficient high-throughput drug screening assays are necessary to enable the discovery of new anti-mycobacterial drugs. The purpose of our work was to develop and validate an assay based on live-cell imaging which can monitor the growth of two distinct phenotypes of Mycobacterium tuberculosis and to test their susceptibility to commonly used TB drugs. Results Both planktonic and cording phenotypes were successfully monitored as fluorescent objects using the live-cell imaging system IncuCyte S3, allowing collection of data describing distinct characteristics of aggregate size and growth. The quantification of changes in total area of aggregates was used to define IC50 and MIC values of selected TB drugs which revealed that the cording phenotype grew more rapidly and displayed a higher susceptibility to rifampicin. In checkerboard approach, testing pair-wise combinations of sub-inhibitory concentrations of drugs, rifampicin, linezolid and pretomanid demonstrated superior growth inhibition of cording phenotype. Conclusions Our results emphasize the efficiency of using automated live-cell imaging and its potential in high-throughput whole-cell screening to evaluate existing and search for novel antimycobacterial drugs.


Sign in / Sign up

Export Citation Format

Share Document