Astragaloside IV alleviates the brain damage induced by subarachnoid hemorrhage via PI3K/Akt signaling pathway

2020 ◽  
Vol 735 ◽  
pp. 135227 ◽  
Author(s):  
Long Yang ◽  
Xiujuan Dong ◽  
Wei Zhang
2021 ◽  
Author(s):  
Xiaoxia Yang ◽  
Mengxia Wang ◽  
Qian Zhou ◽  
Yanxian Bai ◽  
Jing Liu ◽  
...  

Abstract Lepidium meyenii (Maca) is an annual or biennial herb from South America that is a member of the genus Lepidium L. in the family Cruciferae. This herb has antioxidant, anti-apoptotic, and enhances autophagy functions and can prevent cell death, and protect neurons from ischemic damage. Macamide B, an effective active ingredient of maca, has a neuroprotective role in neonatal hypoxic-ischemic brain damage (HIBD), and the underlying mechanism of its neuroprotective effect is not yet known. The purpose of this study is to explore the impact of macamide B on HIBD-induced autophagy and apoptosis and its potential mechanism for neuroprotection. The modified Rice-Vannucci method was used to induce HIBD on 7-day-old (P7) macamide B and vehicle-pretreated pups. TTC staining was used to evaluate the cerebral infarct volume of pups, brain water content was measured to evaluate the neurological function of pups, neurobehavioral testing was used to assess functional recovery after HIBD, TUNEL and FJC staining was used to detect cell autophagy and apoptosis, and western blot analysis was used to detect the expression levels of the pro-survival signaling pathway phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT) and autophagy and the apoptosis-related proteins. The results show that macamide B pretreatment can significantly decrease brain damage, improve the recovery of neural function after HIBD. At the same time, macamide B pretreatment can induce the activation of PI3K/AKT signaling pathway after HIBD, enhance autophagy, and reduce hypoxic-ischemic (HI)-induced apoptosis. In addition, 3-methyladenine (3-MA), an inhibitor of PI3K/AKT signaling pathway, significantly inhibits the increase in autophagy levels, aggravates HI-induced apoptosis, and reverses the neuroprotective effect of macamide B on HIBD. Our data indicate that macamide B pretreatment might regulate autophagy through PI3K/AKT signaling pathway, thereby reducing HIBD-induced apoptosis and exerting neuroprotective effects on neonatal HIBD. Macamide B may become a new drug for the prevention and treatment of HIBD.


2016 ◽  
Vol 41 (10) ◽  
pp. 2779-2787 ◽  
Author(s):  
Xian-kun Tu ◽  
Hua-bin Zhang ◽  
Song-sheng Shi ◽  
Ri-sheng Liang ◽  
Chun-hua Wang ◽  
...  

2019 ◽  
Vol 56 (12) ◽  
pp. 8203-8219 ◽  
Author(s):  
Takeshi Okada ◽  
Budbazar Enkhjargal ◽  
Zachary D. Travis ◽  
Umut Ocak ◽  
Jiping Tang ◽  
...  

2014 ◽  
Vol 1587 ◽  
pp. 15-22 ◽  
Author(s):  
Xiao-ke Hao ◽  
Wei Wu ◽  
Chun-xi Wang ◽  
Guang-bin Xie ◽  
Tao Li ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Chia-Mao Chang ◽  
Yu-Feng Su ◽  
Chih-Zen Chang ◽  
Chia-Li Chung ◽  
Yee-Jean Tsai ◽  
...  

Cerebral vasospasm is the leading cause of mortality and morbidity in patients after aneurysmal subarachnoid hemorrhage (SAH). However, the mechanism and adequate treatment of vasospasm are still elusive. In the present study, we evaluate the effect and possible mechanism of progesterone on SAH-induced vasospasm in a two-hemorrhage rodent model of SAH. Progesterone (8 mg/kg) was subcutaneously injected in ovariectomized female Sprague-Dawley rats one hour after SAH induction. The degree of vasospasm was determined by averaging the cross-sectional areas of basilar artery 7 days after first SAH. Expressions of endothelial nitric oxide synthase (eNOS) and phosphorylated Akt (phospho-Akt) in basilar arteries were evaluated. Prior to perfusion fixation, there were no significant differences among the control and treated groups in physiological parameters recorded. Progesterone treatment significantly(P<0.01)attenuated SAH-induced vasospasm. The SAH-induced suppression of eNOS protein and phospho-Akt were relieved by progesterone treatment. This result further confirmed that progesterone is effective in preventing SAH-induced vasospasm. The beneficial effect of progesterone might be in part related to upregulation of expression of eNOS via Akt signaling pathway after SAH. Progesterone holds therapeutic promise in the treatment of cerebral vasospasm following SAH.


Endocrinology ◽  
2005 ◽  
Vol 146 (6) ◽  
pp. 2749-2759 ◽  
Author(s):  
Krishnan M. Dhandapani ◽  
F. Marlene Wade ◽  
Virendra B. Mahesh ◽  
Darrell W. Brann

Abstract 17β-Estradiol (E2) and selective estrogen receptor modulators (SERMs), such as tamoxifen, mediate numerous effects in the brain, including neurosecretion, neuroprotection, and the induction of synaptic plasticity. Astrocytes, the most abundant cell type in the brain, influence many of these same functions and thus may represent a mediator of estrogen action. The present study examined the regulatory effect and underlying cell signaling mechanisms of E2-induced release of neurotropic growth factors from primary rat cortical astrocyte cultures. The results revealed that E2 (0.5, 1, and 10 nm) and tamoxifen (1 μm) increased both the expression and release of the neuroprotective cytokines, TGF-β1 and TGF-β2 (TGF-β), from cortical astrocytes. The stimulatory effect of E2 was attenuated by the estrogen receptor (ER) antagonist, ICI182,780, suggesting ER dependency. The effect of E2 also appeared to involve mediation by the phosphotidylinositol 3-kinase (PI3K)/Akt signaling pathway, because E2 rapidly induced Akt phosphorylation, and pharmacological or molecular inhibition of the PI3K/Akt pathway prevented E2-induced release of TGF-β. Additionally, the membrane-impermeant conjugate, E2-BSA, stimulated the release of TGF-β, suggesting the potential involvement of a membrane-bound ER. Finally, E2, tamoxifen, and E2-BSA were shown to protect neuronal-astrocyte cocultures from camptothecin-induced neuronal cell death, effects that were attenuated by ICI182,780, Akt inhibition, or TGF-β immunoneutralization. As a whole, these studies suggest that E2 induction of TGF-β release from cortical astrocytes could provide a mechanism of neuroprotection, and that E2 stimulation of TGF-β expression and release from astrocytes occurs via an ER-dependent mechanism involving mediation by the PI3K/Akt signaling pathway.


2013 ◽  
Vol 155 (11) ◽  
pp. 2063-2070 ◽  
Author(s):  
Jin-Ning Song ◽  
Ji-Yang An ◽  
Guang-Shan Hao ◽  
Dan-Dong Li ◽  
Peng Sun ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Kui Huang ◽  
Lei Shen ◽  
Tieming Niu ◽  
Ying Zhao ◽  
Jiucun Fu ◽  
...  

Background/Aims. Naomaitai can improve blood perfusion and ameliorate the damage in the paraventricular white matter. This study was focused on observing the neuroprotective effect of Naomaitai on the vascular dementia of rat and exploring the action mechanism of PI3K/PDK1/AKT signaling pathway.Methods.A vascular dementia model of rats was established by permanent, bilateral common carotid artery occlusion. Rats’ behavior was tested by Neurological deficit score and the Morris water maze. The pathology and apoptosis were detected through HE staining and TUNEL assay. Myelin sheath loss and nerve fiber damage were detected by LFB staining. Inflammatory factors, oxidative stress, and brain damage markers were detected through ELISA. The expression of apoptosis-related proteins and PI3K/PDK1/AKT signaling pathway related proteins were measured by western blot. The expressions of PI3K, PDK1, AKT, and MBP in paraventricular white matter cells were detected by immunofluorescence.Results. Naomaitai treatment decreased neurological function score in rats with vascular dementia, ameliorated paraventricular white matter damage caused by long-term hypoxia, and hypoperfusion reduced the brain injury markers S-100βand NSE contents, suppressed inflammatory reaction and oxidative stress, reduced IL-1β, IL-6, TNF-α, and MDA contents, and remarkably increased IL-10 and SOD contents. TUNEL and western blot assay showed that Naomaitai treatment decreased neuronal cell apoptosis, increased Bcl-2 expression, and reduced caspase-3 and Bax expression. Furthermore, we found Naomaitai inhibited PI3K and PDK1 expression and activated phosphorylated AKT protein in rats with vascular dementia. However, the protective effect of Naomatai in rats with vascular dementia was inhibited, and expression of PI3K signaling pathway-related proteins was blocked after administration of PI3K inhibitor.Conclusion. Naomaitai can ameliorate brain damage in rats with vascular dementia, inhibit neuronal apoptosis, and have anti-inflammatory and antioxidative stress effects, which may be regulated by the PI3K/PDK1/AKT signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document