Systemic acyl-ghrelin increases tail skin temperature in rats without affecting their thermoregulatory behavior in a cold environment

2020 ◽  
Vol 737 ◽  
pp. 135306
Author(s):  
Yuki Uchida ◽  
Chinami Tsunekawa ◽  
Izumi Sato
1973 ◽  
Vol 51 (11) ◽  
pp. 814-824 ◽  
Author(s):  
K. Myhre ◽  
B. Hellstrøm

Colonic temperatures (TC), heart rates (HR), back skin and tail skin temperatures (TST) were measured in six warm acclimated (+24 °C) male albino rats running on a treadmill at three different work loads (HR ranging from 400 beats/min to 500 beats/min). Ambient temperatures (TA) ranged from about +8 °C to about +30 °C. TC increased immediately upon onset of work. Exercising in a cold environment ultimately made the rats hypothermic and in a warm environment hyperthermic. Within the limits set by the external thermal stress the rats controlled TC independently of the work intensity.High trunk skin temperatures were recorded in all experiments. Exercise in cold and cool environments produced tail skin vasoconstriction. In the 21 °C environment half of the rats produced tail skin vasodilation. In the 28 °C environment most experiments produced this effect. Cessation of work was accompanied by prompt vasoconstriction. The results indicated that exercise time before tail vasodilation was affected by exercise as well as by the tail skin temperature prior to vasodilation.


2018 ◽  
Vol 314 (2) ◽  
pp. R171-R180 ◽  
Author(s):  
Zachary J. Schlader ◽  
James R. Sackett ◽  
Suman Sarker ◽  
Blair D. Johnson

The recruitment of thermoeffectors, including thermoregulatory behavior, relative to changes in body temperature has not been quantified in humans. We tested the hypothesis that changes in skin blood flow, behavior, and sweating or metabolic rate are initiated with increasing changes in mean skin temperature (Tskin) in resting humans. While wearing a water-perfused suit, 12 healthy young adults underwent heat (Heat) and cold stress (Cold) that induced gradual changes in Tskin. Subjects controlled the temperature of their dorsal neck to their perceived thermal comfort. Thus neck skin temperature provided an index of thermoregulatory behavior. Neck skin temperature (Tskin), core temperature (Tcore), metabolic rate, sweat rate, and nonglabrous skin blood flow were measured continually. Data were analyzed using segmental regression analysis, providing an index of thermoeffector activation relative to changes in Tskin. In Heat, increases in skin blood flow were observed with the smallest elevations in Tskin ( P < 0.01). Thermal behavior was initiated with an increase in Tskin of 2.4 ± 1.3°C (mean ± SD, P = 0.04), while sweating was observed with further elevations in Tskin (3.4 ± 0.5°C, P = 0.04), which coincided with increases in Tcore ( P = 0.98). In Cold, reductions in skin blood flow occurred with the smallest decrease in Tskin ( P < 0.01). Thermal behavior was initiated with a Tskin decrease of 1.5 ± 1.3°C, while metabolic rate ( P = 0.10) and Tcore ( P = 0.76) did not change throughout. These data indicate that autonomic and behavioral thermoeffectors are recruited in coordination with one another and likely in an orderly manner relative to the comparative physiological cost.


Author(s):  
William F. Fox

The literature dealing with human performance in the cold is reviewed. Seven major areas are discussed: a) tactile sensitivity, b) manual performance, c) tracking, d) reaction time, e) complex behaviors, f) maintaining hand skin temperature (HST) as a means of maintaining operator effectiveness, and g) adaptation and acclimatization to low ambient temperatures. Performance decrements at low ambient temperatures appear to result principally from lowered HST and competing stimuli provided by the cold environment.


2018 ◽  
Vol 30 (1) ◽  
pp. 49-61 ◽  
Author(s):  
Damjana Celcar

Purpose The purpose of this paper is to investigate the thermo-physiological comfort of male business garments made of common textiles, as well as business clothing that contains phase change materials (PCMs) as a lining or outerwear material. In view of the fact that people wear business clothing throughout the whole day in different environmental conditions, this study investigate the effect of PCMs incorporated in male business clothing systems on the thermo-physiological comfort of the wearer under different cold environmental conditions. Design/methodology/approach The influence of particular business garments on the thermo-physiological comfort of the wearer during different physical activities and cold environmental temperatures was determined experimentally with the help of study participants, as a change of two physiological parameters: mean skin temperature and heart rate. A questionnaire and an assessment scale were also used in order to evaluate the wearer’s subjective feeling of comfort. In this investigation, all tests with study participants were performed under artificially created environmental conditions in a climate chamber at different cold environmental temperatures ranging from 10°C to −5°C with increments of 5°C, and different physical activities that simulate as closely as possible real life activities such as sitting and walking. Findings The results of the performed research work show that PCMs provide a small temporary thermal effect that is reflected in small increases or decreases in mean skin temperature during changes in activity. Furthermore, it was concluded that the small effect of PCMs in business clothing systems on the thermo-physiological comfort of the wearer in a cold environment, which is shown as a change of mean skin temperature when subjects walk on a treadmill and subsequently move to a sitting position, should not be ignored in a cold environment where low skin temperatures were measured. Practical implications The results of this study demonstrate that the physiological parameters of thermo-physiological comfort, in combination with subjective evaluation, provide valuable information for textile and clothing manufactures as well as scientists and engineers involved in the design and development of new products with thermal comfort as a quality criterion. Originality/value The investigation shows that different environmental conditions, activity levels and thermal properties of clothing systems have a considerable impact on the physiological parameters of the subjects and subjective assessment of thermal comfort in a cold environment, and that PCMs incorporated in business clothing systems provide a small temporary thermal effect that is reflected in small increases or decreases in mean skin temperature during changes in activity, such as when subjects walk on a treadmill and subsequently move to a sitting position.


2012 ◽  
Vol 5 (11) ◽  
pp. 14
Author(s):  
M. ALEXANDER OTTO
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document