scholarly journals RNA Binding Protein Motif 3 Inhibits Oxygen-Glucose Deprivation/Reoxygenation-Induced Apoptosis Through Promoting Stress Granules Formation in PC12 Cells and Rat Primary Cortical Neurons

2020 ◽  
Vol 14 ◽  
Author(s):  
Wenwen Si ◽  
Zhen Li ◽  
Zifeng Huang ◽  
Shanyu Ye ◽  
Xinrong Li ◽  
...  
Author(s):  
Ying Tian ◽  
Liang Wang ◽  
Zhiqiang Qiu ◽  
Yulun Xu ◽  
Rongrong Hua

We reported that a high level of autophagy was initiated by oxygen-glucose deprivation (OGD) and was maintained in neurons even after oxygen-glucose deprivation followed by reoxygenation (OGD/R), accompanied by neuronal apoptosis. This study focused on autophagy-induced apoptosis and its signaling network, especially the role of endoplasmic reticulum stress (ERS). Analysis of primary cultured cortical neurons from mice showed that the autophagy-induced apoptosis depended on Caspase-8 and -9 but not Caspase-12. This finding did not mean that the endoplasmic reticulum did not participate in this process. Increases in the levels of endoplasmic reticulum (ER) biomarkers and Binding immunoglobulin protein (BiP) were induced by autophagy in OGD/R-treated neurons. In addition, as an apoptotic transcription factor induced by ER stress, C/EBP homologous protein (CHOP) expression was significantly increased in neurons after OGD/R. This result suggested that the autophagy-Bip-CHOP-caspase (8 and 9)-dependent apoptotic signaling pathway at least partly participated in autophagy-induced apoptosis in primary cortical neurons. It revealed that ER induced apoptosis in neurons suffering from OGD/R injury in an ER stress-CHOP-dependent manner rather than a caspase-12-dependent manner. However, more research on signaling or cross-linking networks and intermediate links are needed. The realization of caspase-12-independent BiP-CHOP neuronal apoptosis pathway has expanded our understanding of the neuronal apoptosis network, which may eventually provide endogenous interventional strategies for OGD/R injury after stroke.


2011 ◽  
Vol 31 (11) ◽  
pp. 2152-2159 ◽  
Author(s):  
Anna Lena Datwyler ◽  
Gisela Lättig-Tünnemann ◽  
Wei Yang ◽  
Wulf Paschen ◽  
Sabrina Lin Lin Lee ◽  
...  

Small ubiquitin-like modifier (SUMO)2/3 but not SUMO1 conjugation is activated after transient cerebral ischemia. To investigate its function, we blocked neuronal SUMO2/3 translation through lentiviral microRNA delivery in primary cortical neurons. Viability was unaffected by SUMO2/3 silencing unless neurons were stressed by transient oxygen–glucose deprivation (OGD). Both 15 and 45 minutes of OGD were tolerated by control microRNA-expressing neurons but damaged >60% of neurons expressing SUMO2/3 microRNA. Damaging OGD (75 minutes) increased neuronal loss to 54% (control microRNA) and to 99% (SUMO2/3 microRNA). This suggests that activation of SUMO2/3 conjugation is an endogenous neuroprotective stress response.


2012 ◽  
Vol 1441 ◽  
pp. 47-52 ◽  
Author(s):  
Shouchun Li ◽  
Zhiwen Zhang ◽  
Jinghui Xue ◽  
Aijun Liu ◽  
Haitao Zhang

2021 ◽  
Vol 18 (10) ◽  
pp. 2037-2043
Author(s):  
Hong Zhu ◽  
Dan Ren ◽  
Lan Xiao ◽  
Ting Zhang ◽  
Ruomeng Li ◽  
...  

Purpose: To investigate whether the cytoprotective effect of anthocyanin (Anc) on oxygen-glucose deprivation/reperfusion (OGD/R)-induced cell injury is related to apoptosis signal-regulating kinase 1 (ASK1)/c-Jun N-terminal kinase (JNK)/p38 signaling pathway. Methods: PC12 cells were pre-treated with various concentrations of Anc (10, 50, and 100 μg/mL) in OGD/R-induced cell injury model. The 3-(4, 5)-dimethylthiahiazo (-z-y1)-3, 5-di-phenytetrazoliumromide (MTT) assay was used to assess cell viability. Cell apoptosis was measured by lactic acid dehydrogenase (LDH) release assay and flow cytometry. Western blot was employed to determine the protein expressions of BCL-2, BAX, caspase-3, p-ASK1 (Thr845), p-JNK, and p-p38. Results: The results indicate that Anc increased the viability of PC12 cells after OGD/R exposure (p < 0.05), and also efficiently rescued OGD/R-induced apoptosis (p < 0.05). Mechanistic studies showed that these protective roles of Anc are related to the inhibition of ASK1/JNK/p38 signaling pathway. Conclusion: The results indicate Anc protects against OGD/R-induced cell injury by enhancing cell viability and inhibiting cell apoptosis. The underlying mechanism of action is partly via inactivation of ASK1/JNK/p38 signaling pathway. Thus, Anc has promise as a potential natural agent to prevent and treat cerebral ischemia-reperfusion injury.


Sign in / Sign up

Export Citation Format

Share Document