Aldose reductase deficiency leads to oxidative stress-induced dopaminergic neuronal loss and autophagic abnormality in an animal model of Parkinson's disease

2017 ◽  
Vol 50 ◽  
pp. 119-133 ◽  
Author(s):  
Patrick K.K. Yeung ◽  
Angela K.W. Lai ◽  
Hyo Jin Son ◽  
Xu Zhang ◽  
Onyou Hwang ◽  
...  
Biomedicines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 918
Author(s):  
Heng-Chung Kung ◽  
Kai-Jung Lin ◽  
Chia-Te Kung ◽  
Tsu-Kung Lin

Parkinson’s disease (PD) is the second most common neurodegenerative disease and is characterized by dopaminergic neuronal loss. The exact pathogenesis of PD is complex and not yet completely understood, but research has established the critical role mitochondrial dysfunction plays in the development of PD. As the main producer of cytosolic reactive oxygen species (ROS), mitochondria are particularly susceptible to oxidative stress once an imbalance between ROS generation and the organelle’s antioxidative system occurs. An overabundance of ROS in the mitochondria can lead to mitochondrial dysfunction and further vicious cycles. Once enough damage accumulates, the cell may undergo mitochondria-dependent apoptosis or necrosis, resulting in the neuronal loss of PD. Polyphenols are a group of natural compounds that have been shown to offer protection against various diseases, including PD. Among these, the plant-derived polyphenol, resveratrol, exhibits neuroprotective effects through its antioxidative capabilities and provides mitochondria protection. Resveratrol also modulates crucial genes involved in antioxidative enzymes regulation, mitochondrial dynamics, and cellular survival. Additionally, resveratrol offers neuroprotective effects by upregulating mitophagy through multiple pathways, including SIRT-1 and AMPK/ERK pathways. This compound may provide potential neuroprotective effects, and more clinical research is needed to establish the efficacy of resveratrol in clinical settings.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Jintanaporn Wattanathorn ◽  
Chatchada Sutalangka

To date, the therapeutic strategy against cognitive impairment in Parkinson’s disease (PD) is still not in satisfaction level and requires novel effective intervention. Based the oxidative stress reduction and cognitive enhancement induced by laser acupuncture at HT7, the beneficial effect of laser acupuncture at HT7 against cognitive impairment in PD has been focused. In this study, we aimed to determine the effect of laser acupuncture at HT7 on memory impairment, oxidative stress status, and the functions of both cholinergic and dopaminergic systems in hippocampus of animal model of PD. Male Wistar rats, weighing 180–220 g, were induced unilateral lesion at right substantianigra by 6-OHDA and were treated with laser acupuncture continuously at a period of 14 days. The results showed that laser acupuncture at HT7 enhanced memory and neuron density in CA3 and dentate gyrus. The decreased AChE, MAO-B, and MDA together with increased GSH-Px in hippocampus of a 6-OHDA lesion rats were also observed. In conclusion, laser acupuncture at HT7 can improve neuron degeneration and memory impairment in animal model of PD partly via the decreased oxidative stress and the improved cholinergic and dopaminergic functions. More researches concerning effect of treatment duration are still required.


2010 ◽  
Vol 299 (4) ◽  
pp. R1082-R1090 ◽  
Author(s):  
Jill K. Morris ◽  
Gregory L. Bomhoff ◽  
John A. Stanford ◽  
Paige C. Geiger

Despite numerous clinical studies supporting a link between type 2 diabetes (T2D) and Parkinson's disease (PD), the clinical literature remains equivocal. We, therefore, sought to address the relationship between insulin resistance and nigrostriatal dopamine (DA) in a preclinical animal model. High-fat feeding in rodents is an established model of insulin resistance, characterized by increased adiposity, systemic oxidative stress, and hyperglycemia. We subjected rats to a normal chow or high-fat diet for 5 wk before infusing 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle. Our goal was to determine whether a high-fat diet and the resulting peripheral insulin resistance would exacerbate 6-OHDA-induced nigrostriatal DA depletion. Prior to 6-OHDA infusion, animals on the high-fat diet exhibited greater body weight, increased adiposity, and impaired glucose tolerance. Two weeks after 6-OHDA, locomotor activity was tested, and brain and muscle tissue was harvested. Locomotor activity did not differ between the groups nor did cholesterol levels or measures of muscle atrophy. High-fat-fed animals exhibited higher homeostatic model assessment of insulin resistance (HOMA-IR) values and attenuated insulin-stimulated glucose uptake in fast-twitch muscle, indicating decreased insulin sensitivity. Animals in the high-fat group also exhibited greater DA depletion in the substantia nigra and the striatum, which correlated with HOMA-IR and adiposity. Decreased phosphorylation of HSP27 and degradation of IκBα in the substantia nigra indicate increased tissue oxidative stress. These findings support the hypothesis that a diet high in fat and the resulting insulin resistance may lower the threshold for developing PD, at least following DA-specific toxin exposure.


2007 ◽  
Vol 50 (1) ◽  
pp. 119-129 ◽  
Author(s):  
Rieko Setsuie ◽  
Yu-Lai Wang ◽  
Hideki Mochizuki ◽  
Hitoshi Osaka ◽  
Hideki Hayakawa ◽  
...  

2020 ◽  
Vol 21 (17) ◽  
pp. 5981
Author(s):  
Ola Wasel ◽  
Jennifer L. Freeman

The zebrafish (Danio rerio) is routinely used in biological studies as a vertebrate model system that provides unique strengths allowing applications in studies of neurodevelopmental and neurodegenerative diseases. One specific advantage is that the neurotransmitter systems are highly conserved throughout vertebrate evolution, including between zebrafish and humans. Disruption of the dopaminergic signaling pathway is linked to multiple neurological disorders. One of the most common is Parkinson’s disease, a neurodegenerative disease associated with the loss of dopaminergic neurons, among other neuropathological characteristics. In this review, the development of the zebrafish’s dopaminergic system, focusing on genetic control of the dopaminergic system, is detailed. Second, neurotoxicant models used to study dopaminergic neuronal loss, including 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), the pesticides paraquat and rotenone, and 6-hydroxydopamine (6-OHDA), are described. Next, zebrafish genetic knockdown models of dj1, pink1, and prkn established for investigating mechanisms of Parkinson’s disease are discussed. Chemical modulators of the dopaminergic system are also highlighted to showcase the applicability of the zebrafish to identify mechanisms and treatments for neurodegenerative diseases such as Parkinson’s disease associated with the dopaminergic system.


Sign in / Sign up

Export Citation Format

Share Document