Transmigration of beta amyloid specific heavy chain antibody fragments across the in vitro blood–brain barrier

Neuroscience ◽  
2011 ◽  
Vol 190 ◽  
pp. 37-42 ◽  
Author(s):  
K.S. Rutgers ◽  
R.J.A. Nabuurs ◽  
S.A.A. van den Berg ◽  
G.J. Schenk ◽  
M. Rotman ◽  
...  
Electronics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1056
Author(s):  
Ekaterina Zinchenko ◽  
Maria Klimova ◽  
Aysel Mamedova ◽  
Ilana Agranovich ◽  
Inna Blokhina ◽  
...  

Alzheimer’s disease (AD) is an incurable pathology associated with progressive decline in memory and cognition. Phototherapy might be a new promising and alternative strategy for the effective treatment of AD, and has been actively discussed over two decades. However, the mechanisms of therapeutic photostimulation (PS) effects on subjects with AD remain poorly understood. The goal of this study was to determine the mechanisms of therapeutic PS effects in beta-amyloid (Aβ)-injected mice. The neurological severity score and the new object recognition tests demonstrate that PS 9 J/cm2 attenuates the memory and neurological deficit in mice with AD. The immunohistochemical assay revealed a decrease in the level of Aβ in the brain and an increase of Aβ in the deep cervical lymph nodes obtained from mice with AD after PS. Using the in vitro model of the blood-brain barrier (BBB), we show a PS-mediated decrease in transendothelial resistance and in the expression of tight junction proteins as well an increase in the BBB permeability to Aβ. These findings suggest that a PS-mediated BBB opening and the activation of the lymphatic clearance of Aβ from the brain might be a crucial mechanism underlying therapeutic effects of PS in mice with AD. These pioneering data open new strategies in the development of non-pharmacological methods for therapy of AD and contribute to a better understanding of the PS effects on the central nervous system.


2011 ◽  
Vol 18 (5) ◽  
pp. 373-379 ◽  
Author(s):  
CORBIN J. BACHMEIER ◽  
DAVID BEAULIEU-ABDELAHAD ◽  
MICHAEL J. MULLAN ◽  
DANIEL PARIS

2019 ◽  
Vol 18 (1) ◽  
pp. 37-43 ◽  
Author(s):  
Fengjin Hao ◽  
Yueqin Feng ◽  
Yifu Guan

Objective: Botulinum toxin has many applications in the treatment of central diseases, as biological macromolecules, it is difficult to pass through the blood-brain barrier which greatly limits their application. In this paper, we verified whether the botulinum toxin heavy chain HCS has a specific neural guidance function. Methods: We have constructed a fusion protein with botulinum toxin heavy chain and a membrane penetrating peptide TAT (TAT-EGFP-HCS). Recombinant plasmid of botulinum toxin light chain (LC) and TAT were also constructed. The biological activity of HCS, LC, TAT-EGFP-HCS and TAT-EGFP-LC were measured by its ability to cleave protein SNAP-25. The intracellular expression efficiency was evaluated by detecting the fluorescence intensity of EGFP in the cells by fluorescence microscopy and FACS. In addition, we also determined the effect of the above plasmid expression on the apoptosis of PC12 cells. Finally, the tissue specificity of TAT-EGFP-HCS in vivo experiments was also examined. Results: In the present study, we have constructed a fusion protein with botulinum toxin heavy chain and a membrane penetrating peptide TAT which can lead the entire molecule through the blood-brain barrier and reach the central nervous system. Moreover, we also examined the biological activities of this recombinant biological macromolecule and its physiological effects on nerve cells in vitro and in vivo. Conclusion: TAT-EGFP-HSC expressed in vitro has neural guidance function and can carry large proteins across the cell membrane without influencing the biological activity.


2021 ◽  
Vol 1 (5) ◽  
pp. 2170051
Author(s):  
Christina L. Schofield ◽  
Aleixandre Rodrigo-Navarro ◽  
Matthew J. Dalby ◽  
Tom Van Agtmael ◽  
Manuel Salmeron-Sanchez

Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 892
Author(s):  
Elisa L. J. Moya ◽  
Elodie Vandenhaute ◽  
Eleonora Rizzi ◽  
Marie-Christine Boucau ◽  
Johan Hachani ◽  
...  

Central nervous system (CNS) diseases are one of the top causes of death worldwide. As there is a difficulty of drug penetration into the brain due to the blood–brain barrier (BBB), many CNS drugs treatments fail in clinical trials. Hence, there is a need to develop effective CNS drugs following strategies for delivery to the brain by better selecting them as early as possible during the drug discovery process. The use of in vitro BBB models has proved useful to evaluate the impact of drugs/compounds toxicity, BBB permeation rates and molecular transport mechanisms within the brain cells in academic research and early-stage drug discovery. However, these studies that require biological material (animal brain or human cells) are time-consuming and involve costly amounts of materials and plastic wastes due to the format of the models. Hence, to adapt to the high yields needed in early-stage drug discoveries for compound screenings, a patented well-established human in vitro BBB model was miniaturized and automated into a 96-well format. This replicate met all the BBB model reliability criteria to get predictive results, allowing a significant reduction in biological materials, waste and a higher screening capacity for being extensively used during early-stage drug discovery studies.


2021 ◽  
Vol 34 ◽  
pp. 102377
Author(s):  
Laís Ribovski ◽  
Edwin de Jong ◽  
Olga Mergel ◽  
Guangyue Zu ◽  
Damla Keskin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document