scholarly journals Erratum to “Revisiting RGEs for general gauge theories” [Nucl. Phys. B 939 (2019) 1–48]

2021 ◽  
Vol 966 ◽  
pp. 115339
Author(s):  
Ingo Schienbein ◽  
Florian Staub ◽  
Tom Steudtner ◽  
Kseniia Svirina
1995 ◽  
Vol 10 (35) ◽  
pp. 2687-2694 ◽  
Author(s):  
P.M. LAVROV ◽  
P.YU. MOSHIN ◽  
A.A. RESHETNYAK

Lagrangian quantization rules for general gauge theories are proposed on a basis of a superfield formulation of the standard BRST symmetry. Independence of the S-matrix on a choice of the gauge is proved. The Ward identities in terms of superfields are derived.


1997 ◽  
Vol 12 (05) ◽  
pp. 975-1002 ◽  
Author(s):  
Luis Álvarez-Gaumé ◽  
Marcos Mariño

We extend previous work on the soft breaking of N = 2 supersymmetric QCD. We present the formalism for the breaking due to a dilaton spurion for a general gauge group and obtain the exact effective potential. We obtain some general features of the vacuum structure in the pure SU (N) Yang–Mills theory and we also derive a general mass formula for this class of theories, in particular we present explicit results for the mass spectrum in the SU(2) case. Finally we analyze the vacuum structure of the SU(2) theory with one massless hypermultiplet. This theory presents dyon condensation and a first order phase transition in the supersymmetry breaking parameter driven by nonmutually local BPS states. This could be a hint of Argyres–Douglas-like phases in nonsupersymmetric gauge theories.


1998 ◽  
Vol 13 (23) ◽  
pp. 4077-4089 ◽  
Author(s):  
S. FALKENBERG ◽  
B. GEYER ◽  
P. LAVROV ◽  
P. MOSHIN

We consider generating functionals of Green's functions with external fields in the framework of BV and BLT quantization schemes for general gauge theories. The corresponding Ward identities are obtained, and the gauge dependence is studied.


2016 ◽  
Vol 31 (20n21) ◽  
pp. 1650111 ◽  
Author(s):  
Pavel Yu. Moshin ◽  
Alexander A. Reshetnyak

We continue our research[Formula: see text] and extend the class of finite BRST–anti-BRST transformations with odd-valued parameters [Formula: see text], [Formula: see text], introduced in these works. In doing so, we evaluate the Jacobians induced by finite BRST–anti-BRST transformations linear in functionally-dependent parameters, as well as those induced by finite BRST–anti-BRST transformations with arbitrary functional parameters. The calculations cover the cases of gauge theories with a closed algebra, dynamical systems with first-class constraints, and general gauge theories. The resulting Jacobians in the case of linearized transformations are different from those in the case of polynomial dependence on the parameters. Finite BRST–anti-BRST transformations with arbitrary parameters induce an extra contribution to the quantum action, which cannot be absorbed into a change of the gauge. These transformations include an extended case of functionally-dependent parameters that implies a modified compensation equation, which admits nontrivial solutions leading to a Jacobian equal to unity. Finite BRST–anti-BRST transformations with functionally-dependent parameters are applied to the Standard Model, and an explicit form of functionally-dependent parameters [Formula: see text] is obtained, providing the equivalence of path integrals in any 3-parameter [Formula: see text]-like gauges. The Gribov–Zwanziger theory is extended to the case of the Standard Model, and a form of the Gribov horizon functional is suggested in the Landau gauge, as well as in [Formula: see text]-like gauges, in a gauge-independent way using field-dependent BRST–anti-BRST transformations, and in [Formula: see text]-like gauges using transverse-like non-Abelian gauge fields.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Ben Heidenreich ◽  
Jacob McNamara ◽  
Miguel Montero ◽  
Matthew Reece ◽  
Tom Rudelius ◽  
...  

Abstract It is widely believed that consistent theories of quantum gravity satisfy two basic kinematic constraints: they are free from any global symmetry, and they contain a complete spectrum of gauge charges. For compact, abelian gauge groups, completeness follows from the absence of a 1-form global symmetry. However, this correspondence breaks down for more general gauge groups, where the breaking of the 1-form symmetry is insufficient to guarantee a complete spectrum. We show that the correspondence may be restored by broadening our notion of symmetry to include non-invertible topological operators, and prove that their absence is sufficient to guarantee a complete spectrum for any compact, possibly disconnected gauge group. In addition, we prove an analogous statement regarding the completeness of twist vortices: codimension-2 objects defined by a discrete holonomy around their worldvolume, such as cosmic strings in four dimensions. We discuss how this correspondence is modified in various, more general contexts, including non-compact gauge groups, Higgsing of gauge theories, and the addition of Chern-Simons terms. Finally, we discuss the implications of our results for the Swampland program, as well as the phenomenological implications of the existence of twist strings.


2003 ◽  
Vol 18 (12) ◽  
pp. 2077-2084
Author(s):  
B. Geyer ◽  
D. Gitman ◽  
I. Tyutin

We present a reduction procedure to the so-called canonical form for the Euler-Lagrange equations of a general gauge theory. The reduction procedure reveals constraints in the Lagrangian formulation of singular theories and, in that respect, is similar to the Dirac procedure in the Hamiltonian formulation. Moreover, the reduction procedure allows one to reveal the gauge identities between the Euler-Lagrange equations. As a demonstration we apply the reduction procedure to theories without higher derivatives.


2003 ◽  
Vol 18 (27) ◽  
pp. 5099-5125
Author(s):  
B. GEYER ◽  
D. M. GITMAN ◽  
P. M. LAVROV ◽  
P. YU. MOSHIN

We consider the two-dimensional model of W3-gravity within Lagrangian quantization methods for general gauge theories. We use the Batalin–Vilkovisky formalism to study the arbitrariness in the realization of the gauge algebra. We obtain a one-parametric nonanalytic extension of the gauge algebra, and a corresponding solution of the classical master equation, related via an anticanonical transformation to a solution corresponding to an analytic realization. We investigate the possibility of closed solutions of the classical master equation in the Sp (2)-covariant formalism and show that such solutions do not exist in the approximation up to the third order in ghost and auxiliary fields.


Sign in / Sign up

Export Citation Format

Share Document