Analytical solution for the linear wave diffraction by a uniform vertical cylinder with an arbitrary smooth cross-section

2016 ◽  
Vol 126 ◽  
pp. 163-175 ◽  
Author(s):  
Jiabin Liu ◽  
Anxin Guo ◽  
Hui Li
2020 ◽  
Vol 8 (8) ◽  
pp. 575
Author(s):  
Sarat Chandra Mohapatra ◽  
Hafizul Islam ◽  
C. Guedes Soares

A mathematical model for the problem of wave diffraction by a floating fixed truncated vertical cylinder is formulated based on Boussinesq equations (BEs). Using Bessel functions in the velocity potentials, the mathematical problem is solved for second-order wave amplitudes by applying a perturbation technique and matching conditions. On the other hand, computational fluid dynamics (CFD) simulation results of normalized free surface elevations and wave heights are compared against experimental fluid data (EFD) and numerical data available in the literature. In order to check the fidelity and accuracy of the Boussinesq model (BM), the results of the second-order super-harmonic wave amplitude around the vertical cylinder are compared with CFD results. The comparison shows a good level of agreement between Boussinesq, CFD, EFD, and numerical data. In addition, wave forces and moments acting on the cylinder and the pressure distribution around the vertical cylinder are analyzed from CFD simulations. Based on analytical solutions, the effects of radius, wave number, water depth, and depth parameters at specific elevations on the second-order sub-harmonic wave amplitudes are analyzed.


Author(s):  
István Ecsedi ◽  
Attila Baksa

AbstractThis paper deals with the Saint-Venant torsion of elastic, cylindrically orthotropic bar whose cross section is a sector of a circular ring shaped bar. The cylindrically orthotropic homogeneous elastic wedge-shaped bar strengthened by on its curved boundary surfaces by thin isotropic elastic shells. An analytical method is presented to obtain the Prandtl’s stress function, torsion function, torsional rigidity and shearing stresses. A numerical example illustrates the application of the developed analytical method.


Author(s):  
А.В. ГУКАСЯН ◽  
В.С. КОСАЧЕВ ◽  
Е.П. КОШЕВОЙ

Получено аналитическое решение двумерного слоистого напорного течения в канале шнека, позволяющее моделировать расходно-напорные характеристики прямоугольных каналов шнековых прессов с учетом гидравлического сопротивления формующих устройств и рассчитывать расходно-напорные характеристики экструдеров в широком диапазоне геометрии витков как в поперечном сечении, так и по длине канала. Obtained the analytical solution of two-dimensional layered pressure flow in the screw channel, allow to simulate the flow-dynamic pressure characteristics of rectangular channels screw presses taking into account the hydraulic resistance of the forming device and calculate the mass flow-dynamic pressure characteristics of the extruders in a wide range of the geometry of the coils, as in its cross section and along the length of the channel.


Author(s):  
Thomas B. Johannessen

The present paper addresses the challenges associated with applying weakly nonlinear mode-coupled solutions for wave interaction problems to irregular waves with continuous spectra. Unlike the linear solution, the nonlinear solutions will be strongly dependent on cut-off frequency for problems such as the wave elevation itself or loads on a slender cylinder used together with typical ocean wave spectra. It is found that the divergence of the solutions with respect to the cut-off frequency is related to the nonlinear interaction between waves with very different frequencies. This is, in turn, linked to a long standing discussion about the ability of mode-coupled methods to describe the modulation of a short wave due to the presence of a long wave. In cases where nonlinear properties associated with a measured or assumed history of the surface elevation is sought, it is not necessary to calculate accurately the nonlinear evolution of the wave field in space and time. For such cases it is shown that results which are independent of frequency cut-off may be obtained by introducing a maximum bandwidth in frequency between waves which are allowed to interact. It is shown that a suitable bandwidth can be found by applying this method to the problem of back-calculating a linear wave profile from a measured wave profile. In order to verify that this choice of bandwidth is suitable for second and third order terms, nonlinear loads on a slender vertical cylinder are calculated using the FNV method of Faltinsen, Newman, and Vinje (1995, “Nonlinear Wave Loads on a Slender, Vertical Cylinder,” J. Fluid Mech., 289, pp. 179–198). The method is used to compare loads calculated based on measured surface elevations with measurements of loads on two cylinders with different diameters. This comparison indicates that the bandwidth formulation is suitable and that the FNV solution gives a reasonable estimate of loading on slender cylinders. There are, however, loading mechanisms that the FNV solution does not describe, notably the secondary loading cycle first observed by Grue et al. (1993, Higher Harmonic Wave Exciting Forces on a Vertical Cylinder, Institute of Mathematics, University of Oslo, Preprint No. 2). Finally, the method is employed to calculate the ringing response on a large concrete gravity base platform. The base moment response is calculated using the FNV loading on the shafts and linear loads from a standard diffraction code, together with a structural finite element beam model. Comparison with results from a recent model testing campaign shows a remarkable agreement between the present method and the measured response.


1969 ◽  
Vol 20 (2) ◽  
pp. 178-190 ◽  
Author(s):  
W. Carnegie ◽  
B. Dawson

SummaryTheoretical and experimental natural frequencies and modal shapes up to the fifth mode of vibration are given for a straight blade of asymmetrical aerofoil cross-section. The theoretical procedure consists essentially of transforming the differential equations of motion into a set of simultaneous first-order equations and solving them by a step-by-step finite difference procedure. The natural frequency values are compared with results obtained by an analytical solution and with standard solutions for certain special cases. Good agreement is shown to exist between the theoretical results for the various methods presented. The equations of motion are dependent upon the coordinates of the axis of the centre of flexure of the beam relative to the centroidal axis. The effect of variations of the centre of flexure coordinates upon the frequencies and modal shapes is shown for a limited range of coordinate values. Comparison is made between the theoretical natural frequencies and modal shapes and corresponding results obtained by experiment.


Sign in / Sign up

Export Citation Format

Share Document