scholarly journals Charge-transfer complex modified bottom electrodes for high performance low voltage organic field-effect transistors and circuits

2017 ◽  
Vol 49 ◽  
pp. 206-211 ◽  
Author(s):  
Congyan Lu ◽  
Zhuoyu Ji ◽  
Guangwei Xu ◽  
Nianduan Lu ◽  
Ling Li ◽  
...  
2019 ◽  
Vol 11 (37) ◽  
pp. 34188-34195 ◽  
Author(s):  
Hongming Chen ◽  
Xing Xing ◽  
Miao Zhu ◽  
Jupeng Cao ◽  
Muhammad Umair Ali ◽  
...  

2011 ◽  
Vol 4 (1) ◽  
pp. 6-10 ◽  
Author(s):  
Sooji Nam ◽  
Jaeyoung Jang ◽  
Jong-Jin Park ◽  
Sang Won Kim ◽  
Chan Eon Park ◽  
...  

2017 ◽  
Vol 48 ◽  
pp. 365-370 ◽  
Author(s):  
S. Georgakopoulos ◽  
A. Pérez-Rodríguez ◽  
A. Campos ◽  
I. Temiño ◽  
S. Galindo ◽  
...  

2018 ◽  
Vol 9 (1) ◽  
pp. 2 ◽  
Author(s):  
Sooji Nam ◽  
Yong Jeong ◽  
Joo Kim ◽  
Hansol Yang ◽  
Jaeyoung Jang

Here, we report on the use of a graphene oxide (GO)/polystyrene (PS) bilayer as a gate dielectric for low-voltage organic field-effect transistors (OFETs). The hydrophilic functional groups of GO cause surface trapping and high gate leakage, which can be overcome by introducing a layer of PS—a hydrophobic polymer—onto the top surface of GO. The GO/PS gate dielectric shows reduced surface roughness and gate leakage while maintaining a high capacitance of 37.8 nF cm−2. The resulting OFETs show high-performance operation with a high mobility of 1.05 cm2 V−1 s−1 within a low operating voltage of −5 V.


Research ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Yuhao Shi ◽  
Yingkai Zheng ◽  
Jialiang Wang ◽  
Ran Zhao ◽  
Tao Wang ◽  
...  

Organic field-effect transistors (OFETs) are of the core units in organic electronic circuits, and the performance of OFETs replies critically on the properties of their dielectric layers. Owing to the intrinsic flexibility and natural compatibility with other organic components, organic polymers, such as poly(vinyl alcohol) (PVA), have emerged as highly interesting dielectric materials for OFETs. However, unsatisfactory issues, such as hysteresis, high subthreshold swing, and low effective carrier mobility, still considerably limit the practical applications of the polymer-dielectric OFETs for high-speed, low-voltage flexible organic circuits. This work develops a new approach of using supercritical CO2 fluid (SCCO2) treatment on PVA dielectrics to achieve remarkably high-performance polymer-dielectric OFETs. The SCCO2 treatment is able to completely eliminate the hysteresis in the transfer characteristics of OFETs, and it can also significantly reduce the device subthreshold slope to 0.25 V/dec and enhance the saturation regime carrier mobility to 30.2 cm2 V−1 s−1, of which both the numbers are remarkable for flexible polymer-dielectric OFETs. It is further demonstrated that, coupling with an organic light-emitting diode (OLED), the SCCO2-treated OFET is able to function very well under fast switching speed, which indicates that an excellent switching behavior of polymer-dielectric OFETs can be enabled by this SCCO2 approach. Considering the broad and essential applications of OFETs, we envision that this SCCO2 technology will have a very broad spectrum of applications for organic electronics, especially for high refresh rate and low-voltage flexible display devices.


Sign in / Sign up

Export Citation Format

Share Document