A plastic electronic circuit based on low voltage, organic thin-film transistors for monitoring the X-Ray checking history of luggage in airports

2018 ◽  
Vol 58 ◽  
pp. 263-269 ◽  
Author(s):  
Stefano Lai ◽  
Giulia Casula ◽  
Piero Cosseddu ◽  
Laura Basiricò ◽  
Andrea Ciavatti ◽  
...  
2019 ◽  
Vol 73 ◽  
pp. 286-291
Author(s):  
Afra Al Ruzaiqi ◽  
Hideki Okamoto ◽  
Yoshihiro Kubozono ◽  
Ute Zschieschang ◽  
Hagen Klauk ◽  
...  

2020 ◽  
Vol 6 (21) ◽  
pp. eaaz5156 ◽  
Author(s):  
James W. Borchert ◽  
Ute Zschieschang ◽  
Florian Letzkus ◽  
Michele Giorgio ◽  
R. Thomas Weitz ◽  
...  

The primary driver for the development of organic thin-film transistors (TFTs) over the past few decades has been the prospect of electronics applications on unconventional substrates requiring low-temperature processing. A key requirement for many such applications is high-frequency switching or amplification at the low operating voltages provided by lithium-ion batteries (~3 V). To date, however, most organic-TFT technologies show limited dynamic performance unless high operating voltages are applied to mitigate high contact resistances and large parasitic capacitances. Here, we present flexible low-voltage organic TFTs with record static and dynamic performance, including contact resistance as small as 10 Ω·cm, on/off current ratios as large as 1010, subthreshold swing as small as 59 mV/decade, signal delays below 80 ns in inverters and ring oscillators, and transit frequencies as high as 21 MHz, all while using an inverted coplanar TFT structure that can be readily adapted to industry-standard lithographic techniques.


MRS Advances ◽  
2018 ◽  
Vol 3 (49) ◽  
pp. 2931-2936
Author(s):  
G. Kitahara ◽  
K. Aoshima ◽  
J. Tsutsumi ◽  
H. Minemawari ◽  
S. Arai ◽  
...  

ABSTRACTRecently, an epoch-making printing technology called “SuPR-NaP (Surface Photo-Reactive Nanometal Printing)” that allows easy, high-speed, and large-area manufacturing of ultrafine silver wiring patterns has been developed. Here we demonstrate low-voltage operation of organic thin-film transistors (OTFTs) composed of printed source/drain electrodes that are produced by the SuPR-NaP technique. We utilize an ultrathin layer of perfluoropolymer, Cytop, that functions not only as a base layer for producing patterned reactive surface in the SuPR-NaP technique but also as an ultrathin gate dielectric layer of OTFTs. By the use of 22 nm-thick Cytop gate dielectric layer, we successfully operate polycrystalline pentacene OTFTs below 2 V with negligible hysteresis. We also observe the improvement of carrier injection by the surface modification of printed silver electrodes. We discuss that the SuPR-NaP technique allows the production of high-capacitance gate dielectric layers as well as high-resolution printed silver electrodes, which provides promising bases for producing practical active-matrix OTFT backplanes.


2005 ◽  
Vol 870 ◽  
Author(s):  
Stijn De Vusser ◽  
Soeren Steudel ◽  
Kris Myny ◽  
Jan Genoe ◽  
Paul Heremans

AbstractIn this work, we report on high-performance low voltage pentacene Organic Thin-Film Transistors (OTFT's) and circuits. Inverters and ring oscillators have been designed and fabricated. At 15 V supply voltage, we have observed invertors showing a voltage gain of 9 and an output swing of more than 13 V. As for the ring oscillators, oscillations started at supply voltages as low as 8.5 V. At a supply voltage of only 15 V, a stage delay time of 3.3 νs is calculated from experimental results.We believe that these results show for the first time a high speed ring oscillator at relatively low supply voltages. The required supply voltages can be obtained by rectification using an organic (pentacene) diode. These results may have an important impact on the realization of RF-ID tags: by integrating our circuits with an organic diode, the fabrication of organic RF-ID tags comes closer.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Chang-Hung Lee ◽  
Chun-Hao Hsu ◽  
Iu-Ren Chen ◽  
Wen-Jong Wu ◽  
Chih-Ting Lin

To improve the field-effect mobility of all-inkjet-printed organic thin film transistors (OTFTs), a composite material consisted of carbon nanoparticles (CNPs) and poly(3-hexylthiophene) (P3HT) was reported by using homemade inkjet-printing system. These all-inkjet-printed composite OTFTs represented superior characteristics compared to the all-inkjet-printed pristine P3HT OTFTs. To investigate the enhancement mechanism of the blended materials, the percolation model was established and experimentally verified to illustrate the enhancement of the electrical properties with different blending concentrations. In addition, experimental results of OTFT contact resistances showed that both contact resistance and channel resistance were halved. At the same time, X-ray diffraction measurements, Fourier transform infrared spectra, ultraviolet-visible light, and photoluminescence spectra were also accomplished to clarify the material blending effects. Therefore, this study demonstrates the potential and guideline of carbon-based nanocomposite materials in all-inkjet-printed organic electronics.


Sign in / Sign up

Export Citation Format

Share Document