Rectified Schottky diodes that use low-cost carbon paste/InGaZnO junctions

2019 ◽  
Vol 68 ◽  
pp. 212-217 ◽  
Author(s):  
Chun-Ying Huang ◽  
Pei-Te Lin ◽  
Hao-Che Cheng ◽  
Fang-Chi Lo ◽  
Po-Sheng Lee ◽  
...  
Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 259
Author(s):  
Pei-Te Lin ◽  
Jia-Wei Chang ◽  
Syuan-Ruei Chang ◽  
Zhong-Kai Li ◽  
Wei-Zhi Chen ◽  
...  

Ge-based Schottky diodes find applications in high-speed devices. However, Fermi-level pinning is a major issue for the development of Ge-based diodes. This study fabricates a Pt/carbon paste (CP)/Ge Schottky diode using low-cost CP as an interlayer. The Schottky barrier height (ΦB) is 0.65 eV for Pt/CP/n-Ge, which is a higher value than the value of 0.57 eV for conventional Pt/n-Ge. This demonstrates that the CP interlayer has a significant effect. The relevant junction mechanisms are illustrated using feasible energy level band diagrams. This strategy results in greater stability and enables a device to operate for more than 500 h under ambient conditions. This method realizes a highly stable Schottky contact for n-type Ge, which is an essential element of Ge-based high-speed electronics.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 942
Author(s):  
Razvan Pascu ◽  
Gheorghe Pristavu ◽  
Gheorghe Brezeanu ◽  
Florin Draghici ◽  
Philippe Godignon ◽  
...  

A SiC Schottky dual-diode temperature-sensing element, suitable for both complementary variation of VF with absolute temperature (CTAT) and differential proportional to absolute temperature (PTAT) sensors, is demonstrated over 60–700 K, currently the widest range reported. The structure’s layout places the two identical diodes in close, symmetrical proximity. A stable and high-barrier Schottky contact based on Ni, annealed at 750 °C, is used. XRD analysis evinced the even distribution of Ni2Si over the entire Schottky contact area. Forward measurements in the 60–700 K range indicate nearly identical characteristics for the dual-diodes, with only minor inhomogeneity. Our parallel diode (p-diode) model is used to parameterize experimental curves and evaluate sensing performances over this far-reaching domain. High sensitivity, upwards of 2.32 mV/K, is obtained, with satisfactory linearity (R2 reaching 99.80%) for the CTAT sensor, even down to 60 K. The PTAT differential version boasts increased linearity, up to 99.95%. The lower sensitivity is, in this case, compensated by using a high-performing, low-cost readout circuit, leading to a peak 14.91 mV/K, without influencing linearity.


Nanomaterials ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1324
Author(s):  
Wentao Zhang ◽  
Zeyulin Zhang ◽  
Qubo Jiang ◽  
Ziming Wei ◽  
Yuting Zhang ◽  
...  

The inorganic perovskite has a better stability than the hybrid halide perovskite, and at the same time it has the potential to achieve an excellent photoelectric performance as the organic-inorganic hybrid halide perovskite. Thus, the pursuit of a low-cost and high-performance inorganic perovskite solar cell (PSC) is becoming the research hot point in the research field of perovskite devices. In setting out to build vacuum-free and carbon-based all-inorganic PSCs with the traits of simple fabrication and low cost, we propose the ones with a simplified vertical structure of FTO/CsPbIBr2/carbon upon interfacial modification with PEI species. In this structure, both the electron-transporting-layer and hole-transporting-layer are abandoned, and the noble metal is also replaced by the carbon paste. At the same time, FTO is modified by PEI, which brings dipoles to decrease the work function of FTO. Through our measurements, the carrier recombination has been partially suppressed, and the performance of champion PSCs has far exceeded the control devices without PEI modification, which yields a power conversion efficiency of 4.9% with an open circuit voltage of 0.9 V and a fill factor of 50.4%. Our work contributes significantly to give an available method to explore charge-transporting-layer-free, low-cost, and high-performance PSCs.


Metals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 336
Author(s):  
Shin Jang ◽  
Juhyun Nam ◽  
Samgon Lee ◽  
Je Oh

The aim of this study is to design and test a new, simple, and reusable linear variable differential transformer (LVDT)-based in situ bolt preload monitoring system (L-PMS) during fastening of a truck wheel assembly. Instead of measuring the elongation of a bolt, the distance between the end surfaces of both the bolt and nut was monitored via the L-PMS. The distance obtained from the L-PMS was experimentally correlated with the actual preload measured by a washer-type load cell. Since the variation of the distance is related to the stiffness of the bolt and clamped parts, a finite element analysis was also conducted to predict the sensitivity of L-PMS. There was a strong linear relationship between the distance and bolt preload after the bolt and nut were fully snugged. However, a logarithm-shaped nonlinear relationship was irregularly observed before getting snugged, making it difficult to define a clear relationship. In order to tackle this issue, an arc-shaped conductive line was screen-printed onto the surface of the clamped parts using a conductive carbon paste. The results show that a resistance variation of the conductive line during fastening enables to determine the snug point, so the L-PMS combined with resistance measurement results in an approximately ±6% error in the measurement of bolt preload. The proposed L-PMS offers a simple but highly reliable way for measuring bolt preload during fastening, which could be utilized in a heavy-truck production line.


2015 ◽  
Vol 7 (2) ◽  
pp. 27 ◽  
Author(s):  
Francis Tchieno ◽  
Ignas Tonle ◽  
Evangeline Njanja ◽  
Emmanuel Ngameni

We report a simple, sensitive and low-cost electrochemical procedure for the quantification of quercetin (QCT), a flavonoid and an antioxidant, based on 1-ethylpyridinium bromide modified carbon paste electrode. A 1-ethylpyridinium bromide/carbon paste composite electrode was used. The cyclic voltammogram of QCT showed two oxidation peaks at +0.575 V (vs Ag/AgCl/3M KCl) and +0.865 V (vs Ag/AgCl/3M KCl), and a reduction peak at +0.371 V (vs Ag/AgCl/3M KCl) in HCl/KCl solution at pH 1. Differential pulse voltammetry (DPV) analysis in HCl/KCl at pH 1 showed three well-defined oxidation peaks while a single peak was recorded in phosphate buffer at pH 3. The peak currents of QCT significantly increased at the 1-ethylpyridinium bromide modified electrode in comparison with those recorded at the bare carbon paste electrode. This allowed the use of adsorptive stripping voltammetry to develop a simple and sensitive electroanalytical method for the determination of QCT. Key experimental parameters such as pH of the supporting electrolyte, the preconcentration time, the electrolysis potential, electrode composition, QCT concentration and interferents were investigated. The current response was found to be directly proportional to the concentration of QCT in the range from 2.48 x 10-7 M to 7.43 x 10-6 M, leading to a detection limit of 4.48 x 10-8 M. The developed analytical method was successfully applied to the determination of QCT in human urine samples.


Author(s):  
Jehú López ◽  
Aarón Cruz-Ramírez ◽  
Mathieu Hautefeuille
Keyword(s):  
Low Cost ◽  

2004 ◽  
Vol 814 ◽  
Author(s):  
Steven K. Volkman ◽  
Yunan Pei ◽  
David Redinger ◽  
Shong Yin ◽  
Vivek Subramanian

AbstractLow-resistance printed conductors are crucial for the development of ultra-low cost electronic systems such as radio frequency identification tags. Low resistance conductors are required to enable the fabrication of high-Q inductors, capacitors, tuned circuits, and interconnects. Furthermore, conductors of appropriate workfunction are also required to enable fabrication of printed Schottky diodes, necessary for rectification in RFID circuits. Last year, we demonstrated the formation of low-resistance conductive printed structures using gold nanoparticles. Here we demonstrate, for the first time, technologies for formation of printed conductors using silver and copper nanoparticles. These are particularly advantageous for several reasons. First, both silver and copper offer a 2X reduction in sheet resistance over gold, resulting in improved interconnect performance and inductor Q. Second, the material costs associated with both silver and copper are expected to be significantly cheaper than gold. Third, the workfunction of silver enables the fabrication of all-printed Schottky diodes with a silver rectifying contact to many common printable organic semiconductors.Solutions of organic-encapsulated silver and copper nanoparticles may be printed and subsequently annealed to form low-resistance conductor patterns. We describe novel processes for forming silver and copper nanoparticles, and discuss the optimization of the printing/annealing processes to demonstrate plastic-compatible low-resistance conductors. By optimizing both the size of the nanoparticle and the encapsulant sublimation kinetics, it is possible to produce particles that anneal at low-temperatures (<150 °C) to form continuous films having low resistivity and appropriate workfunction for formation of rectifying contacts. This represents a major component required for all- printed RFID.


2019 ◽  
Vol 25 (4) ◽  
pp. 579-587 ◽  
Author(s):  
Jongte Lalmalsawmi ◽  
Zirlianngura ◽  
Diwakar Tiwari ◽  
Seung-Mok Lee

Novel silane grafted bentonite was obtained using the natural bentonite as precursor material. The material which is termed as nanocomposite was characterized by the Fourier Transform Infra-red (FT-IR) and X-ray diffraction (XRD) methods. The surface imaging and elemental mapping was performed using Scanning Electron Microscopic (SEM/EDX) technique. The electroanalytical studies were performed using the nanocomposite electrode. The electroactive surface area of nanocomposite electrode was significantly increased than the pristine bentonite or bare carbon paste based working electrode. The impedance spectroscopic studies were conducted to simulate the equivalent circuit and Nyquist plots were drawn for the carbon paste electrode and nanocomposite electrodes. A single step oxidation/reduction process occurred for As(III) having ΔE value 0.36 V at pH 2.0. The anodic stripping voltammetry was performed for concentration dependence studies of As(III) (0.5 to 20.0 μg/L) and reasonably a good linear relationship was obtained. The detection limit of the As(III) detection was calculated as 0.00360±0.00002 μg/L having with observed relative standard deviations (RSD) less than 4%. The presence of several cations and anions has not affected the detection of As(III) however, the presence of Cu(II) and Mn(II) affected the detection of As(III). The selectivity of As(III) was achieved using the Tlawng river water sample spiked with As(III).


Sign in / Sign up

Export Citation Format

Share Document