Biosynthesis of silver nanoparticles from Phyllanthus niruri leaf extracts and its antibacterial activity against antibiotics-resistant clinical isolates

Pathology ◽  
2020 ◽  
Vol 52 ◽  
pp. S127 ◽  
Author(s):  
Sachin Kumar ◽  
Mohammad Shahid ◽  
Mo Ahamad Khan ◽  
Naresh Kumar ◽  
Haris M. Khan
2020 ◽  
Vol 26 (6) ◽  
pp. 200454-0
Author(s):  
Sabaoon Shamshad ◽  
Jamshaid Rashid ◽  
Ihsan-ul-haq ◽  
Naseem Iqbal ◽  
Saif Ullah Awan

Multidrug resistance of bacteria is an emerging human health hazard and warrants development of novel antibacterial agents with more effective mode of action. Here, zinc oxide and silver nanomaterials were prepared using Ficus palmata Forssk leaf extract with efficient antibacterial activity. SEM coupled with EDS confirmed the spherical symmetry with average particle diameter 50 to 65 nm while the XRD confirmed crystalline face centered cubic structure of silver and hexagonal crystallize phase of zinc oxide nanoparticles. Antibacterial activity was evaluated for 8 pathogenic bacterial strains including 3 drug resistant pathogenic strains. The nanoparticles showed enhanced growth inhibition for resistant strains in comparison with the broad-spectrum antibiotics i.e. roxithromycin and cefixime. Minimum inhibitory concentration in μg.mL<sup>-1</sup> of silver nanoparticles was found to be as low as 33.3 for resistant Streptococcus haemolyticus; 11.1 for Staphylococcus aureus and E Coli; and 3.7 μg.mL<sup>-1</sup> for resistant Pseudomonas aeruginosa. Similarly, the minimum inhibitory concentration of zinc oxide nanoparticles was found to be 100 μg.mL<sup>-1</sup> against resistant Streptococcus haemolyticus and Staphylococcus aureus; 11.1 μg.mL<sup>-1</sup> for resistant Pseudomonas aeruginosa; and 3.7 μg.mL<sup>-1</sup> against resistant E coli. Ficus palmata Forssk leaf extracts can be explored effectively for synthesizing active antibacterial nanomaterials as a non-toxic and environmentally benign synthesis route.


2020 ◽  
Vol 9 (1) ◽  
pp. 931-934

Green synthesis of silver nanoparticles were carried out using the aqueous leaf extracts of Thespesia populnea and characterised by UV Vis spectroscopy, SEM, EDX, AFM and XRD analysis. The silver nanoparticles when tested on Pseudomonas aeruginosa and Bacillus subtilis, was found to have potent antibacterial activity. Further, the microbes were susceptible for a minimum inhibitory concentration of 0.5 µg and also arrested the swarming motility of the test organisms. The nanoparticles interacted with the microbial membrane which led to the leakage of proteins from the cells.


Sign in / Sign up

Export Citation Format

Share Document