Elucidation of antifungal and aflatoxin B1 inhibitory mode of action of Eugenia caryophyllata L. essential oil loaded chitosan nanomatrix against Aspergillus flavus

Author(s):  
Anupam Kujur ◽  
Akshay Kumar ◽  
Bhanu Prakash
2015 ◽  
Vol 3 (3) ◽  
pp. 374-379 ◽  
Author(s):  
Neveen Helmy Abou El-Soud ◽  
Mohamed Deabes ◽  
Lamia Abou El-Kassem ◽  
Mona Khalil

BACKGROUND: The leaves of Ocimum basilicum L. (basil) are used in traditional cuisine as spices; its essential oil has found a wide application in perfumery, dental products as well as antifungal agents.AIM: To assess the chemical composition as well as the in vitro antifungal activity of O. basilicum L. essential oil against Aspergillus flavus fungal growth and aflatoxin B1 production.MATERIAL AND METHODS: The essential oil of O. basilicum was obtained by hydrodistillation and analysed using gas chromatography (GC) and GC coupled with mass spectrometry (GC/MS). The essential oil was tested for its effects on Aspergillus flavus (A. flavus) mycelial growth and aflatoxin B1 production in Yeast Extract Sucrose (YES) growth media. Aflatoxin B1 production was determined by high performance liquid chromatography (HPLC).RESULTS: Nineteen compounds, representing 96.7% of the total oil were identified. The main components were as follows: linalool (48.4%), 1,8-cineol (12.2%), eugenol (6.6%), methyl cinnamate (6.2%), α-cubebene (5.7%), caryophyllene (2.5%), β-ocimene (2.1%) and α-farnesene (2.0%).The tested oil showed significant antifungal activity that was dependent on the used oil concentration. The complete inhibition of A. flavus growth was observed at 1000 ppm oil concentration, while marked inhibition of aflatoxin B1 production was observed at all oil concentrations tested (500, 750 and 1000 ppm).CONCLUSION: These results confirm the antifungal activities of O. basilicum L. oil and its potential use to cure mycotic infections and act as pharmaceutical preservative against A. flavus growth and aflatoxin B1 production.


2018 ◽  
Vol 8 (9) ◽  
pp. 1655 ◽  
Author(s):  
Hyeong-Mi Kim ◽  
Hyunwoo Kwon ◽  
Kyeongsoon Kim ◽  
Sung-Eun Lee

Aspergillus flavus and A. parsiticus produce aflatoxins that are highly toxic to mammals and birds. In this study, the inhibitory effects of 1,8-cineole and t-cinnamaldehyde were examined on the growth of Aspergillus flavus ATCC 22546 and aflatoxin production. 1,8-Cineole showed 50% inhibition of fungal growth at a concentration of 250 ppm, while t-cinnamaldehyde almost completely inhibited fungal growth at a concentration of 50 ppm. Furthermore, no fungal growth was observed when the growth medium was treated with 100 ppm t-cinnamaldehyde. 1,8-Cineole also exhibited 50% inhibition on the production of aflatoxin B1 and aflatoxin B2 at a concentration of 100 ppm, while the addition of 100 ppm t-cinnamaldehyde completely inhibited aflatoxin production. These antiaflatoxigenic activities were related to a dramatic downregulation of the expression of aflE and aflL by 1,8-cineole, but the mode of action for t-cinnamaldehyde was unclear. Collectively, our results suggest that both of the compounds are promising alternatives to the currently used disinfectant, propionic acid, for food and feedstuff preservation.


2021 ◽  
Author(s):  
Shikha Tiwari ◽  
Neha Upadhyay ◽  
Bijendra Kumar Singh ◽  
Vipin Kumar Singh ◽  
Nawal Kishore Dubey

Abstract Present study deals with the efficacy of nanoencapsulated Homalomena aromatica essential oil (HAEO) as a potent green preservative against toxigenic Aspergillus flavus strain (AF-LHP-NS 7), AFB1 and free radical mediated deterioration of stored spices. GC-MS analysis revealed linalool (68.51%) as the major component of HAEO. HAEO was encapsulated into chitosan nanomatrix (CS-HAEO-Ne) and characterized through SEM, FTIR and XRD. CS-HAEO-Ne completely inhibited A. flavus growth and AFB1 biosynthesis at 1.25 µL/mL and 1.0 µL/mL, respectively in comparison to unencapsulated HAEO (1.75 µL/mL and 1.25 µL/mL respectively). CS-HAEO-Ne exhibited superior antioxidant efficacy (IC50 (DPPH) = 4.5 µL/mL) over unencapsulated HAEO (IC50 (DPPH) = 15.9 µL/mL). Further, CS-HAEO-Ne caused significant reduction in ergosterol content in treated A. flavus and provoked leakage of cellular ions (Ca+ 2, Mg+ 2 and K+) as well as 260 nm and 280 nm absorbing materials. Depletion of methylglyoxal level in treated A. flavus cells deals with the novel antiaflatoxigenic efficacy of CS-HAEO-Ne. CS-HAEO-Ne depicted excellent in situ efficacy by inhibiting mold attack and AFB1 contamination, mineral preservation and acceptable sensorial profile. Moreover, broad safety paradigm (LD50 value = 8006.84 µL/kg) of CS-HAEO-Ne also suggest it as novel green preservative to enhance shelf life of stored spices.


LWT ◽  
2020 ◽  
Vol 130 ◽  
pp. 109619 ◽  
Author(s):  
Anupam Kujur ◽  
Akshay Kumar ◽  
Amrita Yadav ◽  
Bhanu Prakash

2018 ◽  
Vol 34 (5) ◽  
pp. 745-749 ◽  
Author(s):  
Anand Kumar Chaudhari ◽  
Vipin Kumar Singh ◽  
Abhishek Kumar Dwivedy ◽  
Somenath Das ◽  
Neha Upadhyay ◽  
...  

2018 ◽  
Vol 69 (8) ◽  
pp. 1927-1933 ◽  
Author(s):  
Mariana Deleanu ◽  
Elisabeta E. Popa ◽  
Mona E. Popa

The compounds in Ginger (Zingiber officinale-Roscoe) essential oil provenience China and wild oregano (Origanum vulgare) essential oil of Romanian origin were identified by GC/MS and their antioxidant and antifungal properties were evaluated. Wild oregano oil was characterized by high content of oxygenated monoterpenes hydrocarbons (84.05%) of which carvacrol was the most abundant (73.85%) followed by b-linalool (3.46%) and thymol (2.29%). Ginger oil had a higher content of sesquiterpene hydrocarbons including zingiberene (31.47%), b-sesquiphellandrene (13.76%), a-curcumene (10.41%), a-farnesene (8.31%) and b-bisabolene (7.55%) but a lower content of oxygenated monoterpenes (7.97%). The high content of oxygenated monoterpens of wild oregano oil is in accordance with total content of polyphenols determined by the Folin�Ciocalteu method (6.71�0.73 mg of gallic acid equivalent per g oil). Ginger oil had only 1.34�0.22 mg gallic acid equivalent per g oil. Wild oregano oils exhibited appreciable in vitro antioxidant activity as assessed by 2, 2`-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging and 2,2�-azino-bis (3 ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS). The sample concentration required to scavenge 50% of the DPPH free radicals was 0.76�0.13 mg/mL for wild oregano oil compared to 20.22�2.12 mg/mL for ginger oil. Also, wild oregano oils showed significant inhibitory activity against selected pathogenic fungi (Fusarium oxysporum, Aspergillus flavus and Penicillium expansum). 1�L of oregano oil is sufficient for almost 75% growth inhibition of Aspergillus flavus compared to ginger oil which shows antifungal activity at 240�L for 78% growth inhibition. It can be concluded that wild oregano oil could be used as food preservative in some food products in which Fusarium oxysporum, Aspergillus flavus and Penicillium expansum could grow and have potential to produce health hazards mycotoxines.


Toxins ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 391
Author(s):  
Christopher Hernandez ◽  
Laura Cadenillas ◽  
Anwar El Maghubi ◽  
Isaura Caceres ◽  
Vanessa Durrieu ◽  
...  

Aflatoxin B1 (AFB1) is a potent carcinogenic mycotoxin that contaminates numerous crops pre- and post-harvest. To protect foods and feeds from such toxins without resorting to pesticides, the use of plant extracts has been increasingly studied. The most interesting candidate plants are those with strong antioxidative activity because oxidation reactions may interfere with AFB1 production. The present study investigates how an aqueous extract of Mimosa tenuiflora bark affects both the growth of Aspergillus flavus and AFB1 production. The results reveal a dose-dependent inhibition of toxin synthesis with no impact on fungal growth. AFB1 inhibition is related to a down-modulation of the cluster genes of the biosynthetic pathway and especially to the two internal regulators aflR and aflS. Its strong anti-oxidative activity also allows the aqueous extract to modulate the expression of genes involved in fungal oxidative-stress response, such as msnA, mtfA, atfA, or sod1. Finally, a bio-guided fractionation of the aqueous extract demonstrates that condensed tannins play a major role in the anti-aflatoxin activity of Mimosa tenuiflora bark.


Sign in / Sign up

Export Citation Format

Share Document