scholarly journals Comparison of oil removal in surfactant alternating gas with water alternating gas, water flooding and gas flooding in secondary oil recovery process

2014 ◽  
Vol 120 ◽  
pp. 86-93 ◽  
Author(s):  
Mehdi Mohammad Salehi ◽  
Mohammad Amin Safarzadeh ◽  
Eghbal Sahraei ◽  
Seyyed Alireza Tabatabaei Nejad
Author(s):  
Omid Arjmand ◽  
Jalal Foroozesh ◽  
Ali Reza Roostaee ◽  
Shahaboddin Ayatollahi

A chemical Enhanced Oil Recovery (EOR) process receives more attentions nowadays. Crude Terephthalic Acid (CTA) as a chemical compound is used for flooding here as an alternative to the traditional hydrolyzed polyacryl amide (HPAM). Crude Oil samples from an Iranian oil field were used during the flooding tests. Sand packed models using two different sizes of sand mainly 50 and 100 meshes were employed in this investigation. A comparison between water flooding and CTA flooding as a secondary oil recovery process revealed that the recovery was improved by 10% when CTA was used. The effect of various injection rates and different concentration of chemical solutions on the recovery factor have been checked. Besides, experimental results improved the surfactant behavior of the CTA solution in water. Moreover, at tertiary state, Sodium Dodocyl Sulfate (SDS) as an anionic surfactant was flooded. Experiments showed that recovery factor increased by 5% OOIP while using SDS.


2013 ◽  
Vol 334-335 ◽  
pp. 83-88
Author(s):  
A. de Lima Cunha ◽  
Severino Rodrigues de Farias Neto ◽  
Antônio Gilson Barbosa de Lima ◽  
E. Santos Barbosa

In this work we carried out a numerical study of the heavy oil recovery process in oil reservoir through water injection. We performed transient tridimensional numerical simulations, considering an isothermal process, with a variation in the position of water injection section (interior and surface) in the reservoir, using the ANSYS CFX 11 commercial package and evaluated its effects on the recovery factor of oil. The numerical results showed that varying the flow rate of water injection from 0.10 to 0.25 kg/s there was an increase in the flow of water and oil produced in 193% and 28%, respectively, and the recovery factor in 16.7%


2011 ◽  
Vol 391-392 ◽  
pp. 1051-1054
Author(s):  
Shu Li Chen ◽  
Wen Xiang Wu ◽  
Jia Bin Tang

In laboratory, the minimum miscible pressure (MMP) of oil and CO2 was studied by using a slim tube model. The results showed that the greater the gas injection pressure, the higher the cumulative recovery. The gas breakthrough when the gas was injected with a volume of 0.7~0.8PV, the trend of cumulative recovery increase slowed down and the produced gas-oil ratio increased dramatically. Core flooding experiments were carried to compare the effects of CO2 and water flooding. As a result, the ultimate oil recovery of CO2 flooding increased with the increase of gas injection pressure. If the gas flooding was miscible, the ultimate recovery of CO2 flooding was generally higher than that of water flooding.


Author(s):  
Mehrdad Sepehri ◽  
Babak Moradi ◽  
Abolghasem Emamzadeh ◽  
Amir H. Mohammadi

Nowadays, nanotechnology has become a very attractive subject in Enhanced Oil Recovery (EOR) researches. In the current study, a carbonate system has been selected and first the effects of nanoparticles on the rock and fluid properties have been experimentally investigated and then the simulation and numerical modeling of the nanofluid injection for enhanced oil recovery process have been studied. After nanofluid treatment, experimental results have shown wettability alteration. A two-phase flow mathematical model and a numerical simulator considering wettability alteration have been developed. The numerical simulation results show that wettability alteration from oil-wet to water-wet due to presence of nanoparticles can lead to 8–10% increase in recovery factor in comparison with normal water flooding. Different sensitivity analyses and injection scenarios have been considered and assessed. Using numerical modeling, wettability alteration process and formation damage caused by entrainment and entrapment of nanoparticles in porous media have been proved. Finally, the net rate of nanoparticles’ loss in porous media has been investigated.


2020 ◽  
Vol 1 (2) ◽  
pp. 83
Author(s):  
Madi Abdullah Naser ◽  
Mohammed A Samba ◽  
Yiqiang Li

Laboratory tests and field applications shows that the salinity of water flooding could lead to significant reduction of residual oil saturation. There has been a growing interest with an increasing number of low-salinity water flooding studies. However, there are few quantitative studies on seawater composition change and it impact on increasing or improving oil recovery.  This study was conducted to investigate only two parameters of the seawater (Salinity and pH) to check their impact on oil recovery, and what is the optimum amount of salinity and ph that we can use to get the maximum oil recovery.  Several core flooding experiments were conducted using sandstone by inject seawater (high, low salinity and different pH). The results of this study has been shown that the oil recovery increases as the injected water salinity down to 6500 ppm and when the pH is around 7. This increase has been found to be supported by an increase in the permeability. We also noticed that the impact of ph on oil recovery is low when the pH is less than 7.


2018 ◽  
Vol 37 (3) ◽  
pp. 945-959 ◽  
Author(s):  
Amirhossein Ebadati ◽  
Erfan Akbari ◽  
Afshin Davarpanah

Alternative injection of gas as slugs with water slugs, or alternative water gas injection, is the conventional technique for improving the recovery factor due to its high potential for mobilizing the residual oil in place in the reservoirs and to control gas mobility. The water alternating gas methodology is a combination of two oil recovery procedures: gas injection and waterflooding. The principal parameters that must be evaluated in water alternating gas injection in laboratory scale are reservoir heterogeneity, rock type, and fluid properties. In the current investigation, a feasibility study has been performed to analyze the five various scenarios of enhanced oil recovery techniques and compare them experimentally. The laboratory experiments are done for one of the Iranian reservoirs which have been subjected to waterflooding for several years, and the amount of recovery factor for water flooding is about 42%. The results of this study illustrate that water alternating gas injection and hot water alternating gas injection exert a profound impact on the amount of recovery factor. Moreover, the primary purpose of this study is to assess the application of alternative hot water and hot carbon dioxide gas injections in the conventional and fractured reservoir model.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3057
Author(s):  
Baoyang Cheng ◽  
Junjian Li ◽  
Shuai Jiang ◽  
Chunhua Lu ◽  
Hang Su ◽  
...  

The main means of secondary oil recovery is water flooding, which has been widely used in various oilfields. Different flow rates have a great impact on the recovery ratio and the occurrence of remaining oil. Scholars have carried out extensive research on it, but mostly on the macro scale, and research on the three-dimensional micro scale is also limited by accuracy and a lack of accurate understanding. In this paper, micro-CT and core displacement experiments are used to intuitively show the occurrence state of remaining oil under different flow rates. Through a series of quantitative image processing methods and remaining oil classification methods, the occurrence characteristics of remaining oil under different flow rates are systematically evaluated and studied. The results show that: (1) As the displacement rate increases, the remaining oil saturation decreases (61%; 35%; 23%), but the remaining oil is more evenly distributed along the slice; (2) Two lower displacement speeds (0.003 mL/min; 0.03 mL/min) can reduce the volume of huge oil clusters under oil-saturated conditions, and the highest displacement speed (0.3 mL/min) can completely break up large oil clusters into small oil droplets. At the same time, the shape factor of the oil clusters also gradually increases; (3) The proportion of continuous remaining oil volume decreases, and the proportion of discontinuous remaining oil increases. Discontinuous remaining oil is the main production target of EOR; (4) After water flooding, the microscopic remaining oil is more inclined to the middle and corner parts of the larger pores.


Author(s):  
Essa Georges Lwisa

Enhanced Oil Recovery (EOR) techniques are currently one of the top priorities of technological development in the oil industry owing to the increasing demand for oil and gas, which cannot be fulfilled by primary or secondary production methods. The main function of the enhanced oil recovery process is to displace oil in the production wells by the injection of different fluids to supplement the natural energy present in the reservoir. moreover these injecting fluids can alter the reservoir`s properties; for example they can lower the interfacial tension (IFT) between oil and water, alter the rocks` wettability, change the pH value, form emulsions aid in clay migration and reduce the oil viscosity. In this chapter, we will discuss the following methods of chemical enhanced oil recovery: polymer flooding, surfactant flooding, alkaline flooding and smart water flooding. In addition, we will review the merits and demerits of each method and conclude the chapter with our recommendations


Sign in / Sign up

Export Citation Format

Share Document