Dynamic thermal aging of water-based drilling fluids with different types of low-rank coals as environmental friendly shear thinning additives

Author(s):  
Christina Apostolidou ◽  
Ernestos Sarris ◽  
Andreas Georgakopoulos
Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4171
Author(s):  
Rabia Ikram ◽  
Badrul Mohamed Jan ◽  
Akhmal Sidek ◽  
George Kenanakis

An important aspect of hydrocarbon drilling is the usage of drilling fluids, which remove drill cuttings and stabilize the wellbore to provide better filtration. To stabilize these properties, several additives are used in drilling fluids that provide satisfactory rheological and filtration properties. However, commonly used additives are environmentally hazardous; when drilling fluids are disposed after drilling operations, they are discarded with the drill cuttings and additives into water sources and causes unwanted pollution. Therefore, these additives should be substituted with additives that are environmental friendly and provide superior performance. In this regard, biodegradable additives are required for future research. This review investigates the role of various bio-wastes as potential additives to be used in water-based drilling fluids. Furthermore, utilization of these waste-derived nanomaterials is summarized for rheology and lubricity tests. Finally, sufficient rheological and filtration examinations were carried out on water-based drilling fluids to evaluate the effect of wastes as additives on the performance of drilling fluids.


Author(s):  
Torbjørn Vrålstad ◽  
Ragnhild Skorpa ◽  
Arild Saasen

When a drilling fluid column remains static over a timeframe of several years, the drilling fluid separates into different sediment phases due to gravity separation. These heavy sediments, entitled “settled barite”, are the cause of significant operational problems several years after drilling. An important problem caused by settled barite occurs when performing casing cut-and-pull operations during slot recovery and well abandonment: the casing is “stuck” due to the sediments in the annulus outside the casing. The consistency and rheological properties of the sediments determine how easily the casing is removed. In this paper, we report a preliminary study were we have artificially prepared gravity sediment phases for two different types of water-based drilling fluids; one KCl/polymer-based fluid and one bentonite-based fluid. By studying the rheological properties of the obtained sediment phases, we see that there are considerable differences between the sediments for these different drilling fluids.


2018 ◽  
Vol 917 ◽  
pp. 134-139
Author(s):  
Fan Liu ◽  
Guang Cheng Jiang ◽  
Kai Wang ◽  
Jin Xi Wang

In this paper, we demonstrated an artificial nanoparticles, Laponite, as a high performance rheological modifier in water-based drilling fluids. We made a comparison between Laponite nanoparticle and bentonite as rheological modifier in polyanionic cellulose (PAC) solution and weitghted water-based drilling fluids. In viscosity-shear rate test, both Laponite and bentonite could translate 0.5 wt.% PAC solution from Newton fluids to yield-pseudoplastic fluid. However, 1 wt.% Laponite was better in improving the shear-thinning behavior compared with 4 wt.% bentonite. In the stress-shear rate test, the results were fit with Bingham model with a high R2, and 1 wt.% Laponite/0.5 wt.% PAC suspension had a yield point of 5.19 Pa, which was higher than that of 4 wt.% bentonite/0.5 wt.% PAC suspension (3.13 Pa). Similarly, 1 wt.% Laponite/0.5 wt.% PAC suspension maintained a G’ of 12 Pa in the oscillation frequency sweep test, whereas G’ of 4%bentonite/0.5%PAC suspension was nearly 5 Pa. Particularly, 0.5 wt.% PAC /Laponite suspensions could maintain higher gel structure, yield point and better shear-thinning behaviors after 120°C hot rolling. The TEM image revealed that nanoscaled Laponite could form a “star network” with PAC in water, which explained the good rheological properties of PAC/LAP mixed suspensions. Besides, in the weighted drilling fluids, 1 wt.% Laponite could maintained a much higher gel strength compared with 4 wt.% bentonite.As the unique rheological properties, Laponite nanoparticles can greatly enhance abilities of water-based drilling fluids in circulating cuttings and making the borehole clean.


2018 ◽  
Vol 149 ◽  
pp. 01082
Author(s):  
Kaci Chalah ◽  
Abdelbaki Benmounah ◽  
Khaled Benyounes

Bentonite is often used in water-based drilling fluids. The xanthan gum is widely used as to increase the viscosity of the bentonite suspension. For the stabilization of the drilled layers, we use filtrate reducers: sodium carboxymethylcellulose low viscosity and cellulose polyanionic low viscosity. The objective of this work is to explain the effect of the polymers on the rheological behavior of the 5% bentonite suspensions. These results will provide practical recommendations for the rational use of different types of additives in water-based drilling muds. Our work is based on rheological trials on a viscometer. The results obtained on the bentonite 5%-xanthane suspension show a rheofluidifying behavior with yield stress conform to the Herschel-bulckly modal. While increasing the concentration of filtrate reducer decreases the yield stress and reduces the viscosity. The effect of CMC LV is more pronounced than PAC L.


2018 ◽  
Vol 792 ◽  
pp. 125-132
Author(s):  
Kai Wang ◽  
Guan Cheng Jiang ◽  
Fan Liu ◽  
He Shi

This work demonstrated a nanosized material, magnesium aluminum silicate (MAS), as a rheological modifier for low-solid water-based drilling fluids (WBDs) to prompt the development of the safe and high-performance low-solid WBDs. To maintain good filtration property, the polyanionic cellulose (PAC) was introduced into the MAS suspension. Meanwhile, a comprehensive comparison between MAS cooperating with PAC and BT mixing with PAC was conducted. The addition of 0.5 wt% PAC increased the yield stress and generated better shear-thinning performance for 1 wt% MAS and 4 wt% bentonite (BT). The 1 wt% MAS/0.5 wt% PAC exhibited higher yield stress and shear-thinning performance than 4 wt% BT/0.5 wt% PAC. In addition, low-concentration MAS and MAS/PAC suspensions showed higher gel strength and rapider recovery performance compared with high-concentration BT and BT/PAC suspensions. MAS and MAS/PAC maintained excellent thermal stability, compared with other common rheological modifiers, such as xanthan gum (XG), hydroxyethyl cellulose (HEC). After hot rolling at 120 °C for 16 h, WBDs prepared by MAS/PAC exhibited a slight decrease of rheological parameters, which indicated high ability to resist high temperature. The XRF, particle size distribution, and TEM analysis revealed the mechanism of low-concentration MAS and MAS/PAC maintaining better shear-thinning performance, higher gel strength and yield stress. As the excellent rheological properties and thermal stability, MAS has the great potential to be a rheological modifier for low-solid WBDs.


1983 ◽  
Vol 1 (4) ◽  
pp. 813-825 ◽  
Author(s):  
Mark H. Bobman ◽  
Timothy C. Golden ◽  
Robert G. Jenkins
Keyword(s):  
Low Rank ◽  

Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 239
Author(s):  
Wei Wang ◽  
Long Liang ◽  
Yaoli Peng ◽  
Maria Holuszko

Micro-Fourier transform infrared (micro-FTIR) spectroscopy was used to correlate the surface chemistry of low rank coal with hydrophobicity. Six square areas without mineral impurities on low rank coal surfaces were selected as testing areas. A specially-designed methodology was applied to conduct micro-FTIR measurements and contact angle tests on the same testing area. A series of semi-quantitative functional group ratios derived from micro-FTIR spectra were correlated with contact angles, and the determination coefficients of linear regression were calculated and compared in order to identify the structure of the functional group ratios. Finally, two semi-quantitative ratios composed of aliphatic carbon hydrogen, aromatic carbon hydrogen and two different types of carbonyl groups were proposed as indicators of low rank coal hydrophobicity. This work provided a rapid way to predict low rank coal hydrophobicity through its functional group composition and helped us understand the hydrophobicity heterogeneity of low rank coal from the perspective of its surface chemistry.


Sign in / Sign up

Export Citation Format

Share Document