scholarly journals Coexistence in fourth generation digital subscriber lines: Experiment, modeling, and simulation results

2018 ◽  
Vol 28 ◽  
pp. 154-165
Author(s):  
Sanda Drakulić ◽  
Martin Wolkerstorfer ◽  
Driton Statovci
2021 ◽  
Vol 48 (4) ◽  
pp. 53-61
Author(s):  
Andrea Marin ◽  
Carey Williamson

Craps is a simple dice game that is popular in casinos around the world. While the rules for Craps, and its mathematical analysis, are reasonably straightforward, this paper instead focuses on the best ways to cheat at Craps, by using loaded (biased) dice. We use both analytical modeling and simulation modeling to study this intriguing dice game. Our modeling results show that biasing a die away from the value 1 or towards the value 5 lead to the best (and least detectable) cheating strategies, and that modest bias on two loaded dice can increase the winning probability above 50%. Our Monte Carlo simulation results provide validation for our analytical model, and also facilitate the quantitative evaluation of other scenarios, such as heterogeneous or correlated dice.


2014 ◽  
Vol 919-921 ◽  
pp. 2127-2130
Author(s):  
Pei Wen Yu ◽  
Hui Chen

The paper presents a method to build MMG model of ship motion for a oil supply vessel (OSV) with dynamic positioning system. It is assumed that the ship motion exposed to environment disturbances like wind, wave & currents, The simulation results show that the model of the vessel and environment disturbances are suitable, and the method is practicable .


2011 ◽  
Vol 141 ◽  
pp. 359-363 ◽  
Author(s):  
Jun Lan Li ◽  
Shao Ze Yan ◽  
Xue Feng Tan

The clamp band system is a typical locked and separated device of the launch vehicle (LV) / the spacecraft (SC), and its release-separation process is one of the important factors that affect the LV/SC separation movement. A nonlinear spring-damper model was employed to describe the contact-impact behavior between the V-segment of the clamp band and the LV/SC interface, and lumped mass method was used to depict the clamp band. By using ADAMS, a dynamic model of the clamp band system was established. The simulation results show that the impulse of the explosive bolts and the stiffness of lateral-restraining springs have significant effects on the clamp band dynamic envelope. The shock of the satellite-vehicle separation is very vulnerable to the clamp band pretension and the friction coefficient between the V-segment and the LV/SC interface.


Author(s):  
Grzegorz Dobrzynski ◽  
Michal Abramowski

The article presents the stages of modeling and simulation of a new design of a wheelchair with the option of moving up and down stairs. These analyzes were aimed at the synthesis of the de-sign parameters and parameters of the sensor and control systems. The simulation results were verified by experimentally testing the prototype.


2012 ◽  
pp. 179-188 ◽  
Author(s):  
M.P. Nagarkar ◽  
R.N. Zaware ◽  
S.G. Ghalme

Modeling and simulation of metal forming processes are increasingly in demand from the industry as the resulting models are found to be valuable tools considering the optimization of the existing and development of new processes. By the application of modeling and simulation techniques, it is possible to reduce the number of time-consuming experiments such as prototyping. Seamless tubes of various sizes and shapes are manufactured by various processes like sinking, fixed plug, floating plug, moving mandrel, cold working and hot working. The present work deals with the simulation of round tubes while passing through the sink pass, using ANSYS software. The simulation results are the displacement and von Mises stresses. The procedure can be used to improve the product quality and to study the effect of various parameters like die angle on the product quality.


2011 ◽  
Vol 88-89 ◽  
pp. 244-249 ◽  
Author(s):  
Shou Jiang Cai ◽  
Pei Liang Wang ◽  
Zhi Duan Cai ◽  
Jian Hua Mao

Intermittent scan tracking (IST) is a maximum power point tracking (MPPT) method of photovoltaic system. The scanning approach of this method generally is order scanning. But this scanning mode has the weaknesses of the huge storage space and excessive amount of calculation. To eliminate these defects, this paper proposes a new scanning mode, i.e. nested scanning. To verify the effectiveness of the proposed method, a simulation system was modeled based on Matlab/Simulink. In the experiment two scanning modes above were compared and the simulation results proved that, on the premise that the accuracy of results is guaranteed, nested scanning mode can effectively decrease the quantity of required scanning voltages and currents, reduce the amount of calculation and improve the scanning efficiency.


2009 ◽  
Vol 424 ◽  
pp. 43-50
Author(s):  
Farhad Parvizian ◽  
T. Kayser ◽  
Bob Svendsen

The purpose of this work is to predict the microstructure evolution of aluminum alloys during hot metal forming processes using the Finite Element Method (FEM). Here, the focus will be on the extrusion process of aluminum alloys. Several micromechanical mechanisms such as diffusion, recovery, recrystallization and grain growth are involved in various subsequent stages of the extrusion and the cooling process afterward. The evolution of microstructure parameters is motivated by plastic deformation and temperature. A number of thermomechanical aspects such as plastic deformation, heat transfer between the material and the container, heat generated by friction, and cooling process after the extrusion are involved in the extrusion process and result in changes in temperature and microstructure parameters subsequently. Therefore a thermomechanically coupled modeling and simulation which includes all of these aspects is required for an accurate prediction of the microstructure evolution. A brief explanation of the isotropic thermoelastic viscoplastic material model including some of the simulation results of this model, which is implemented as a user material (UMAT) in the FEM software ABAQUS, will be given. The microstructure variables are thereby modeled as internal state variables. The simulation results are finally compared with some experimental results.


2015 ◽  
Vol 76 (4) ◽  
Author(s):  
Mohammad Afif Ayob ◽  
Wan Nurshazwani Wan Zakaria ◽  
Jamaludin Jalani ◽  
Mohd Razali Md Tomari

This paper presents the reliability and accuracy of the developed model of 5-axis Mitsubishi RV-2AJ robot arm. The CAD model of the robot was developed by using SolidWorks while the multi-body simulation environment was demonstrated by using SimMechanics toolbox in MATLAB. The forward and inverse kinematics simulation results proposed that the established model resembles the real robot with accuracy of 98.99%. 


2016 ◽  
Vol 9 (4) ◽  
pp. 1627-1645 ◽  
Author(s):  
Yi Heng ◽  
Lars Hoffmann ◽  
Sabine Griessbach ◽  
Thomas Rößler ◽  
Olaf Stein

Abstract. An inverse transport modeling approach based on the concepts of sequential importance resampling and parallel computing is presented to reconstruct altitude-resolved time series of volcanic emissions, which often cannot be obtained directly with current measurement techniques. A new inverse modeling and simulation system, which implements the inversion approach with the Lagrangian transport model Massive-Parallel Trajectory Calculations (MPTRAC) is developed to provide reliable transport simulations of volcanic sulfur dioxide (SO2). In the inverse modeling system MPTRAC is used to perform two types of simulations, i.e., unit simulations for the reconstruction of volcanic emissions and final forward simulations. Both types of transport simulations are based on wind fields of the ERA-Interim meteorological reanalysis of the European Centre for Medium Range Weather Forecasts. The reconstruction of altitude-dependent SO2 emission time series is also based on Atmospheric InfraRed Sounder (AIRS) satellite observations. A case study for the eruption of the Nabro volcano, Eritrea, in June 2011, with complex emission patterns, is considered for method validation. Meteosat Visible and InfraRed Imager (MVIRI) near-real-time imagery data are used to validate the temporal development of the reconstructed emissions. Furthermore, the altitude distributions of the emission time series are compared with top and bottom altitude measurements of aerosol layers obtained by the Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) and the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) satellite instruments. The final forward simulations provide detailed spatial and temporal information on the SO2 distributions of the Nabro eruption. By using the critical success index (CSI), the simulation results are evaluated with the AIRS observations. Compared to the results with an assumption of a constant flux of SO2 emissions, our inversion approach leads to an improvement of the mean CSI value from 8.1 to 21.4 % and the maximum CSI value from 32.3 to 52.4 %. The simulation results are also compared with those reported in other studies and good agreement is observed. Our new inverse modeling and simulation system is expected to become a useful tool to also study other volcanic eruption events.


Sign in / Sign up

Export Citation Format

Share Document