scholarly journals Molecular insight into the therapeutic potential of phytoconstituents targeting protein conformation and their expression

Phytomedicine ◽  
2019 ◽  
Vol 52 ◽  
pp. 225-237 ◽  
Author(s):  
Vishvanath Tiwari
2020 ◽  
Vol 3 (4) ◽  
pp. 285-299
Author(s):  
Yang Huang ◽  
Hui Sun ◽  
Hai Yu ◽  
Shaowei Li ◽  
Qingbing Zheng ◽  
...  

Abstract The rapid emergence of Coronavirus disease-2019 (COVID-19) caused by severe acute respiratory syndrome 2 coronavirus (SARS-CoV-2) as a pandemic that presents an urgent human health crisis. Many SARS-CoV-2 neutralizing antibodies (NAbs) were developed with efficient therapeutic potential. NAbs-based therapeutics against SARS-CoV-2 are being expedited to preclinical and clinical studies with two antibody drugs, LY3819253 (LY-CoV555) and REGN-COV2 (REGN10933 and REGN10987), approved by the US Food and Drug Administration for emergency use authorization for treating COVID-19. In this review, we provide a systemic overview of SARS-CoV-2 specific or cross-reactive NAbs and discuss their structures, functions and neutralization mechanisms. We provide insight into how these NAbs specific recognize the spike protein of SARS-CoV-2 or cross-react to other CoVs. We also summarize the challenges of NAbs therapeutics such as antibody-dependent enhancement and viral escape mutations. Such evidence is urgently needed to the development of antibody therapeutic interventions that are likely required to reduce the global burden of COVID-19.


Cells ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 42
Author(s):  
Xiaoyu Pu ◽  
Siyang Ma ◽  
Yan Gao ◽  
Tiankai Xu ◽  
Pengyu Chang ◽  
...  

Radiation-induced damage is a common occurrence in cancer patients who undergo radiotherapy. In this setting, radiation-induced damage can be refractory because the regeneration responses of injured tissues or organs are not well stimulated. Mesenchymal stem cells have become ideal candidates for managing radiation-induced damage. Moreover, accumulating evidence suggests that exosomes derived from mesenchymal stem cells have a similar effect on repairing tissue damage mainly because these exosomes carry various bioactive substances, such as miRNAs, proteins and lipids, which can affect immunomodulation, angiogenesis, and cell survival and proliferation. Although the mechanisms by which mesenchymal stem cell-derived exosomes repair radiation damage have not been fully elucidated, we intend to translate their biological features into a radiation damage model and aim to provide new insight into the management of radiation damage.


2021 ◽  
Vol 496 ◽  
pp. 93-103
Author(s):  
Yumeng Zhang ◽  
Shu Liu ◽  
Shu Zhou ◽  
Dandan Yu ◽  
Junjie Gu ◽  
...  

Author(s):  
Joseph Classen ◽  
Katja Stefan

This article reviews several protocols of repetitive transcranial magnetic stimulation (rTMS)-induced plasticity. rTMS, when applied to the motor cortex or other cortical regions of the brain, may induce effects that outlast the stimulation period. The neural plasticity, which emerges as a result of such interventions, has been studied to gain insight into plasticity mechanisms of the brain. In two protocols the structure of rTMS trains is modified, informed by the knowledge of the physiological properties of the corticospinal system. Pulse configuration, stimulus frequency, stimulus intensity, the duration of the application period, and the total number of stimuli are some variables that have to be taken into account when reviewing the physiological effects of rTMS. This article also introduces the concept of patterned rTMS pulses and rTMS with ischemic nerve block. In addition, rTMS has raised considerable interest because of its therapeutic potential; however, much needs to be done in this field.


2011 ◽  
Vol 89 (7) ◽  
pp. 701-712 ◽  
Author(s):  
Yu-Chou Dai ◽  
Woei-Jer Chuang ◽  
Kaw-Yan Chua ◽  
Chi-Chang Shieh ◽  
Jiu-Yao Wang

2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Zhengyun Chen ◽  
Chunyan Wang ◽  
Cuicui Lin ◽  
Lifeng Zhang ◽  
Huimei Zheng ◽  
...  

Endometriosis is an estrogen-dependent chronic inflammatory disease that affects approximately 10% of women of reproductive age and up to 50% of women with infertility. The heterogeneity of the disease makes accurate diagnosis and treatment a clinical challenge. In this study, we generated two models of endometriosis: the first in rats and the second using human ectopic endometrial stromal cells (HEcESCs) derived from the lesion tissues of endometriosis patients. We then applied resveratrol to assess its therapeutic potential. Resveratrol intervention had significant efficacy to attenuate lesion size and to rectify aberrant lipid profiles of model rats. Lipidomic analysis revealed significant lipidomic alterations, including notable increases of sphingolipids and decreases of both glycerolipids and most phospholipids. Upon resveratrol application, both proliferation capacity and invasiveness parameters decreased, and the early apoptosis proportion increased for HEcESCs. The activation of PPARα was also noted as a factor potentially contributing to recovery from endometriosis in both models. Our study provides valuable insight into the mechanisms of resveratrol in endometriosis and therefore strengthens the potential for optimizing resveratrol treatment for this disease.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Joanna L Gillis ◽  
Josephine A Hinneh ◽  
Natalie K Ryan ◽  
Swati Irani ◽  
Max Moldovan ◽  
...  

Alterations to the androgen receptor (AR) signalling axis and cellular metabolism are hallmarks of prostate cancer. This study provides insight into both hallmarks by uncovering a novel link between AR and the pentose phosphate pathway (PPP). Specifically, we identify 6-phosphogluoconate dehydrogenase (6PGD) as an androgen-regulated gene that is upregulated in prostate cancer. AR increased the expression of 6PGD indirectly via activation of sterol regulatory element binding protein 1 (SREBP1). Accordingly, loss of 6PGD, AR or SREBP1 resulted in suppression of PPP activity, as revealed by 1,2-13C2 glucose metabolic flux analysis. Knockdown of 6PGD also impaired growth and elicited death of prostate cancer cells, at least in part due to increased oxidative stress. We investigated the therapeutic potential of targeting 6PGD using two specific inhibitors, physcion and S3, and observed substantial anti-cancer activity in multiple models of prostate cancer, including aggressive, therapy-resistant models of castration-resistant disease as well as prospectively-collected patient-derived tumour explants. Targeting of 6PGD was associated with two important tumour-suppressive mechanisms: first, increased activity of the AMP-activated protein kinase (AMPK), which repressed anabolic growth-promoting pathways regulated by ACC1 and mTOR; and second, enhanced AR ubiquitylation, associated with a reduction in AR protein levels and activity. Supporting the biological relevance of positive feedback between AR and PGD, pharmacological co-targeting of both factors was more effective in suppressing the growth of prostate cancer cells than single agent therapies. Collectively, this work provides new insight into the dysregulated metabolism of prostate cancer and provides impetus for further investigation of co-targeting AR and the PPP as a novel therapeutic strategy.


Author(s):  
Francesco Tavanti ◽  
Alfonso Pedone ◽  
Maria Cristina Menziani

One of the principal hallmarks of Alzheimer’s disease (AD) is related to the aggregation of amyloid-β fibrils in an insoluble form in the brain, also known as amyloidosis. Therefore, a prominent therapeutic strategy against AD consists either in blocking the amyloid aggregation and/or destroying the already formed aggregates. Natural products have shown significant therapeutic potential as amyloid inhibitors from in vitro studies as well as in vivo animal tests. In this study, the interaction of five natural biophenols (curcumin, dopamine, (-)-Epigallocatechin-3-gallate, Quercetin, and Rosmarinic acid) with the amyloid-β(1-40) fibrils has been studied through computational simulations. The results allowed the identification and characterization of the different binding modalities of each compounds and their consequences on fibril dynamics and aggregation. It emerges that the lateral aggregation of the fibrils is strongly influenced by the intercalation of the ligands, which modulate the double-layered structure stability.


2018 ◽  
Vol 9 (3-4) ◽  
pp. 78-86 ◽  
Author(s):  
Andrew Cannon ◽  
Christopher Thompson ◽  
Bradley R. Hall ◽  
Maneesh Jain ◽  
Sushil Kumar ◽  
...  

Author(s):  
Laura Soon ◽  
Phui Qi Ng ◽  
Jestin Chellian ◽  
Thiagarajan Madheswaran ◽  
Jithendra Panneerselvam ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document