Chrysotobibenzyl inhibition of lung cancer cell migration through Caveolin-1-dependent mediation of the integrin switch and the sensitization of lung cancer cells to cisplatin-mediated apoptosis

Phytomedicine ◽  
2019 ◽  
Vol 58 ◽  
pp. 152888 ◽  
Author(s):  
Nalinrat Petpiroon ◽  
Narumol Bhummaphan ◽  
Sucharat Tungsukruthai ◽  
Tatchakorn Pinkhien ◽  
Arnatchai Maiuthed ◽  
...  
2010 ◽  
Vol 285 (50) ◽  
pp. 38832-38840 ◽  
Author(s):  
Sudjit Luanpitpong ◽  
Siera Jo Talbott ◽  
Yon Rojanasakul ◽  
Ubonthip Nimmannit ◽  
Varisa Pongrakhananon ◽  
...  

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Xiaopeng Li ◽  
Guilin Ma ◽  
Wenjie Guo ◽  
Ning Mu ◽  
Yingying Wang ◽  
...  

Abstract Background Hhex(human hematopoietically expressed homeobox), also known as PRH, is originally considered as a transcription factor to regulate gene expression due to its homebox domain. Increasing studies show that Hhex plays a significant role in development, including anterior–posterior axis formation, vascular development and HSCs self-renewal etc. Hhex is linked to many diseases such as cancers, leukemia, and type-2 diabetes. Although Hhex is reported to inhibit cell migration and invasion of breast and prostate epithelial cells by upregulating Endoglin expression, the effect and molecular mechanism for lung cancer cell motility regulation remains elusive. Methods Human non-small cell lung cancer cells and HEK293FT cells were used to investigate the molecular mechanism of Hhex regulating lung cancer cell migration by using Western blot, immunoprecipitation, wound-healing scratch assay, laser confocal. Results Our data indicated that Hhex could inhibit cell migration and cell protrusion formation in lung cancer cells. In addition, Hhex inhibited CFL1 phosphorylation to keep its F-actin-severing activity. RHOGDIA was involved in Hhex-induced CFL1 phosphorylation regulation. Hhex enhanced RHOGDIA interaction with RHOA/CDC42, thus maintaining RHOA/CDC42 at an inactive form. Conclusion Collectively, these data indicate that Hhex inhibited the activation of RHOA/CDC42 by enhancing interaction of RHOGDIA with RHOA/CDC42, and then RHOA/ CDC42-p-CFL1 signaling pathway was blocked. Consequently, the formation of Filopodium and Lamellipodium on the cell surface was suppressed, and thus the ability of lung cancer cells to migrate was decreased accordingly. Our findings show Hhex plays an important role in regulating migration of lung cancer cells and may provide a potential target for lung cancer therapy.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Asieh Naderi ◽  
Elham Soltanmaohammadi ◽  
Vimala Kaza ◽  
Shayne Barlow ◽  
Ioulia Chatzistamou ◽  
...  

Epidemiological evidence suggests that social interactions and especially bonding between couples influence tumorigenesis, yet whether this is due to lifestyle changes, homogamy (likelihood of individuals to marry people of similar health), or directly associated with host-induced effects in tumors remains debatable. In the present study, we explored if tumorigenesis is associated with the bonding experience in monogamous rodents at which disruption of pair bonds is linked to anxiety and stress. Comparison of lung cancer cell spheroids that formed in the presence of sera from bonded and bond-disrupted deer mice showed that in monogamous Peromyscus polionotus and Peromyscus californicus, but not in polygamous Peromyscus maniculatus, the disruption of pair bonds altered the size and morphology of spheroids in a manner that is consistent with the acquisition of increased oncogenic potential. In vivo, consecutive transplantation of human lung cancer cells between P. californicus, differing in bonding experiences (n = 9 for bonded and n = 7 for bond-disrupted), and nude mice showed that bonding suppressed tumorigenicity in nude mice (p<0.05), suggesting that the protective effects of pair bonds persisted even after bonding ceased. Unsupervised hierarchical clustering indicated that the transcriptomes of lung cancer cells clustered according to the serum donors’ bonding history while differential gene expression analysis pointed to changes in cell adhesion and migration. The results highlight the pro-oncogenic effects of pair-bond disruption, point to the acquisition of expression signatures in cancer cells that are relevant to the bonding experiences of serum donors, and question the ability of conventional mouse models to capture the whole spectrum of the impact of the host in tumorigenesis.


2020 ◽  
Vol 10 ◽  
Author(s):  
Jiali Cai ◽  
Mengying Li ◽  
Xiang Wang ◽  
Lei Li ◽  
Qi Li ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-1
Author(s):  
Arpasinee Sanuphan ◽  
Preedakorn Chunhacha ◽  
Varisa Pongrakhananon ◽  
Pithi Chanvorachote

Sign in / Sign up

Export Citation Format

Share Document