Multi-level tolerance opinion dynamics in military command and control networks

2015 ◽  
Vol 437 ◽  
pp. 322-332 ◽  
Author(s):  
Xiao Song ◽  
Wen Shi ◽  
Gary Tan ◽  
Yaofei Ma
Author(s):  
Alma Schaafstal ◽  
Raegan M. Hoeft ◽  
Martin van Schaik

The process of training teams increasingly occurs in synthetic environments. However, it is often still modeled after live team training, including the disadvantages of live training, for example, the fact that all teammates must be available. This paper explores overcoming the disadvantages of human teammates in training teams in synthetic environments, while keeping the advantages of learning in a collaborative and cooperative fashion. Simulated teammates are a promising alternative because they are always available, may be modeled after experienced training personnel, and may be more cost effective in the long run. This paper details a research approach towards the definition of requirements for simulated teammates. In our approach, we carry out a set of experiments using confederates as simulated teammates, in a well-controlled simulation of a military command-and-control task The results of a first experiment show slightly better teamwork skills for those teams trained with simulated teammates.


2015 ◽  
pp. 1231-1245
Author(s):  
Madjid Tavana ◽  
Dawn A. Trevisani ◽  
Dennis T. Kennedy

The increasing complexity in Military Command and Control (C2) systems has led to greater vulnerability due to system availability and integrity caused by internal vulnerabilities and external threats. Several studies have proposed measures of availability and integrity for the assets in the C2 systems using precise and certain measures (i.e., the exact number of attacks on the availability and the integrity, the number of countermeasures for the availability and integrity attacks, the effectiveness of the availability and integrity countermeasure in eliminating the threats, and the financial impact of each attack on the availability and integrity of the assets). However, these measures are often uncertain in real-world problems. The source of uncertainty can be vagueness or ambiguity. Fuzzy logic and fuzzy sets can represent vagueness and ambiguity by formalizing inaccuracies inherent in human decision-making. In this paper, the authors extend the risk assessment literature by including fuzzy measures for the number of attacks on the availability and the integrity, the number of countermeasures for the availability and integrity attacks, and the effectiveness of the availability and integrity countermeasure in eliminating these threats. They analyze the financial impact of each attack on the availability and integrity of the assets and propose a comprehensive cyber-risk assessment system for the Military C2 in the fuzzy environment.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Man Zhu ◽  
Yuan-Qiao Wen

With the increasing application of unmanned surface vehicle-unmanned aerial vehicles (USV-UAVs) in maritime supervision, research on their deployment and control is becoming vitally important. We investigate the application of USV-UAVs for synergistic cruising and evaluate the effectiveness of the proposed collaborative model. First, we build a collaborative model consisting of the cruise vehicles and communication, detection, and command-and-control networks for the USV-UAV. Second, based on an analysis of the problems faced by collaborative USV-UAV systems, we establish a model to evaluate the effectiveness of such synergistic cruises. Third, we propose a weighting method for each evaluation factor. Finally, a model consisting of one UAV and four USVs is employed to validate our synergistic cruise model.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Xiue Gao ◽  
Duoping Zhang ◽  
Keqiu Li ◽  
Bo Chen

Cascading failures in the command and control networks (C2 networks) could substantially affect the network invulnerability to some extent. In particular, without considering the characteristics of hierarchy structure, it is quite misleading to employ the existing cascading failure models and effectively analyze the invulnerability of C2 networks. Therefore, a novel cascading failure model for command and control networks with hierarchy structure is proposed in this paper. Firstly, a method of defining the node’s initial load in C2 networks based on hierarchy-degree is proposed. By applying the method, the impact of organizational positions and the degree of the node on its initial load could be highlighted. Secondly, a nonuniform adjustable load redistribution strategy (NALR strategy) is put forward in this paper. More specifically, adjusting the redistribution coefficient could allocate the load from failure nodes to the higher and the same level neighboring nodes according to different proportions. It could be demonstrated by simulation results that the robustness of C2 networks against cascading failures could be dramatically improved by adjusting the initial load adjustment coefficient, the tolerance parameter, and the load redistribution coefficient. And finally, comparisons with other relational models are provided to verify the rationality and effectiveness of the model proposed in this paper. Subsequently, the invulnerability of C2 networks could be enhanced.


Sign in / Sign up

Export Citation Format

Share Document