scholarly journals A Cascading Failure Model for Command and Control Networks with Hierarchy Structure

2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Xiue Gao ◽  
Duoping Zhang ◽  
Keqiu Li ◽  
Bo Chen

Cascading failures in the command and control networks (C2 networks) could substantially affect the network invulnerability to some extent. In particular, without considering the characteristics of hierarchy structure, it is quite misleading to employ the existing cascading failure models and effectively analyze the invulnerability of C2 networks. Therefore, a novel cascading failure model for command and control networks with hierarchy structure is proposed in this paper. Firstly, a method of defining the node’s initial load in C2 networks based on hierarchy-degree is proposed. By applying the method, the impact of organizational positions and the degree of the node on its initial load could be highlighted. Secondly, a nonuniform adjustable load redistribution strategy (NALR strategy) is put forward in this paper. More specifically, adjusting the redistribution coefficient could allocate the load from failure nodes to the higher and the same level neighboring nodes according to different proportions. It could be demonstrated by simulation results that the robustness of C2 networks against cascading failures could be dramatically improved by adjusting the initial load adjustment coefficient, the tolerance parameter, and the load redistribution coefficient. And finally, comparisons with other relational models are provided to verify the rationality and effectiveness of the model proposed in this paper. Subsequently, the invulnerability of C2 networks could be enhanced.

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Yun-ming Wang ◽  
Bo Chen ◽  
Xiao-shuang Chen ◽  
Xiu-e Gao

Cascading failure models for command and control networks (C2 networks) continue to be a challenging and important research area. Current solutions share a common limitation because the solutions focus only on the importance of each node in isolation using one index rather than considering the contribution degree of neighboring nodes, which makes the initial load definition inaccurate and affects the cascading invulnerability of the network. To address this limitation, a new cascading failure model for C2 networks is proposed. The new model CFMAdjM, which is based on an m-order adjacency matrix, proposes a method of initial load definition using the contribution degree of m-order neighboring nodes and defines the nonlinear load capacity model according to the nonlinear relationship between load and capacity. Finally, the influence of model parameters on the cascading failure of C2 networks is analyzed through simulation, and the results demonstrate that the new model effectively resists the cascading failure and enhances the survivability of the network by defining the initial load and adjusting the coefficient appropriately.


2019 ◽  
Vol 2019 ◽  
pp. 1-15
Author(s):  
Yunming Wang ◽  
Bo Chen ◽  
Weidong Li ◽  
Duoping Zhang

Influential nodes act as a hub for information transmission in a command and control network. The identification of influential nodes in a network of this nature is a significant and challenging task; however, it is necessary if the invulnerability of the network is to be increased. The existing k-shell method is problematic in that it features a coarse sorting granularity and does not consider the local centrality of nodes. Thus, the degree of accuracy with which the influential nodes can be identified is relatively low. This motivates us to propose a method based on an integral k-shell to identify the influential nodes in a command and control network. This new method takes both the global and local information of nodes into account, introduces the historical k-shell and a 2-order neighboring degree, and refines the k-shell decomposition process in a network. Simulation analysis is carried out from two perspectives: to determine the impact on network performance when influential nodes are removed and to obtain the correlation between the integral k-shell value and its propagation value. The simulation results show that the integral k-shell method, which employs an algorithm of lower complexity, accurately identifies the influence of those nodes with the same k-shell values. Furthermore, the method significantly improves the accuracy with which the influential nodes can be identified.


2008 ◽  
Author(s):  
Daniel P. Jenkins ◽  
Neville A. Stanton ◽  
Paul M. Salmon ◽  
Guy H. Walker

1992 ◽  
Vol 25 (3) ◽  
pp. 13-21
Author(s):  
R. L. Williamson

The American approach to environmental regulation is characterized by fragmentation of responsibilities, primary reliance on command and control regulations, extraordinary complexity, a preference for identifiable standards, and heavy resort to litigation. This system has provided important benefits, including significant reduction of environmental contamination, substantial use of science in decision-making, broad participatory rights, and the stimulation of new treatment technologies. However, these gains have been achieved at excessive cost. Too much reliance is placed on command and control methods and especially on technology-based standards. There is too much resort to litigation, and inadequate input from science. Participatory rights are being undermined, and there is a poor allocation of decision-making among the federal agencies and the states. Over-regulation sometimes leads to under-regulation, and insufficient attention is given to the impact on small entities. The responsibility for these difficulties rests with everyone, including the federal agencies, the Congress, the general public and the courts. Changes in the regulatory system are needed. We should abandon the use of technology-based standards to control toxic substances under the Clean Water Act in favor of strong health- and environmentally based standards, coupled with taxes on toxic substances in wastewater.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Man Zhu ◽  
Yuan-Qiao Wen

With the increasing application of unmanned surface vehicle-unmanned aerial vehicles (USV-UAVs) in maritime supervision, research on their deployment and control is becoming vitally important. We investigate the application of USV-UAVs for synergistic cruising and evaluate the effectiveness of the proposed collaborative model. First, we build a collaborative model consisting of the cruise vehicles and communication, detection, and command-and-control networks for the USV-UAV. Second, based on an analysis of the problems faced by collaborative USV-UAV systems, we establish a model to evaluate the effectiveness of such synergistic cruises. Third, we propose a weighting method for each evaluation factor. Finally, a model consisting of one UAV and four USVs is employed to validate our synergistic cruise model.


2013 ◽  
Vol 846-847 ◽  
pp. 853-857 ◽  
Author(s):  
Xing Zhao Peng ◽  
Bi Yue Li ◽  
Hong Yao

A cascading failure model for multi-layered networks is established using the Coupled Map Lattices (CML) method, the invulnerability of multi-layered network under random attacks and intentional attacks is investigated. The simulation results show that compared with isolated networks, multi-layered networks are more fragile and dont exhibit the invulnerability to suppress cascading failures under random attacks. Furthermore, we find that decreasing the inter-layer coupling strength or enhancing the inner-layer coupling strength can significantly improve the invulnerability of the multi-layered networks to resist cascading failures.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Hui Li ◽  
Chuandang Zhao ◽  
Xiaoying Tang ◽  
Jiawei Cheng ◽  
Guanyang Lu ◽  
...  

Environmental regulation policies are being continuously enriched today. To effectively improve green innovation efficiency through environmental regulations, it is urgent to better understand the impact of different environmental regulations on green innovation efficiency (GIE). However, due to the defects of previous methods for measuring GIE, existing studies may have deviations when analysing the effect of environmental regulations on GIE. To fill this gap, using Shaanxi, China, as a case study, the present study proposes a network data envelopment analysis (DEA) model based on neutral cross-efficiency evaluation to accurately measure the GIE of Shaanxi during the period of 2001–2017. On this basis, this study further analysed the impact of different types of environmental regulations on GIE from three aspects: causality, evolutionary relationships, and effect paths. The results indicate that (1) the GIE of Shaanxi Province showed a “fluctuation-slow growth-steady growth” trend during 2001–2017, and after 2014, the problem of an uncoordinated relationship between technology research and design (R&D) and technology transformation began to appear; (2) there was a linear evolutionary relationship between command-and-control environmental regulation and GIE and a “U”-shaped evolutionary relationship between market-based/voluntary environmental regulation and GIE; and (3) command-and-control environmental regulation and voluntary environmental regulation affected GIE mainly at the technology R&D stage, while market-based environmental regulation ran through the entire process of green innovation activities. This study improves the evaluation methods and theoretical systems of GIE and provides the scientific basis for government decision-makers to formulate environmental regulation policies.


Sign in / Sign up

Export Citation Format

Share Document