UV sensitivity enhancement in ZnO:Cu films through simple post-annealing treatment

2021 ◽  
pp. 413603
Author(s):  
Eka Nurfani ◽  
Lutfi Antika ◽  
M. Samsul Anrokhi ◽  
Wahyu S. Sipahutar ◽  
Aditya Rianjanu ◽  
...  
2021 ◽  
Author(s):  
Yuanwei Jiang ◽  
Shuangying Cao ◽  
Linfeng Lu ◽  
Guanlin Du ◽  
Yinyue Lin ◽  
...  

Abstract Owing to its large work function, MoOX has been widely used for hole-selective contact in both thin film and crystalline silicon solar cells. In this work, thermally evaporated MoOX films are employed on the rear sides of p-type crystalline silicon (p-Si) solar cells, where the optical and electronic properties of the MoOX films as well as the corresponding device performances are investigated as a function of post-annealing treatment. The MoOX film annealed at 100oC shows the highest work function and proves the best hole selectivity based on the results of energy band simulation and contact resistivity measurements. The full rear p-Si/MoOX/Ag contacted solar cells demonstrate the best performance with an efficiency of 19.19%, which is the result of the combined influence of MoOX’s hole selectivity and passivation ability.


Nanomaterials ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1555 ◽  
Author(s):  
Bourdin ◽  
Gaudon ◽  
Weill ◽  
Duttine ◽  
Gayot ◽  
...  

Tungsten trioxide (WO3) is well-known as one of the most promising chromogenic compounds. It has a drastic change of coloration induced from different external stimuli and so its applications are developed as gas sensors, electrochromic panels or photochromic sensors. This paper focuses on the photochromic properties of nanoWO3, with tunable composition (with tunable oxygen sub-stoichiometry). Three reference samples with yellow, blue and black colors were prepared from polyol synthesis followed by post annealing under air, none post-annealing treatment, or a post-annealing under argon atmosphere. These three samples differ in terms of crystallographic structure (cubic system versus monoclinic system), oxygen vacancy concentration, electronic band diagram with occurrence of free or trapped electrons and their photochromic behavior. Constituting one main finding, it is shown that the photochromic behavior is highly dependent on the compound’s composition/color. Rapid and important change of coloration under UV (ultraviolet) irradiation was evidenced especially on the blue compound, i.e., the photochromic coloring efficiency of this compound in terms of contrast between bleached and colored phase, as the kinetic aspect is high. The photochromism is reversible in a few hours. This hence opens a new window for the use of tungsten oxide as smart photochromic compounds.


2009 ◽  
Vol 79-82 ◽  
pp. 747-750 ◽  
Author(s):  
Dong Qing Liu ◽  
Wen Wei Zheng ◽  
Hai Feng Cheng ◽  
Hai Tao Liu

Thermochromic vanadium dioxide (VO2) exhibits a semi-conducting to metallic phase transition at about 68°C, involving strong variations in electrical and optical properties. A simple method was proposed to prepare VO2 thin films from easily gained V2O5 thin films. The detailed thermodynamic calculation was done and the results show that V2O5 will decompose to VO2 when the post annealing temperature reaches 550°C at the atmospheric pressure of less than 0.06Pa. The initial V2O5 films were prepared by sol-gel method on fused-quartz substrates. Different post annealing conditions were studied. The derived VO2 thin film samples were characterized using X-ray diffraction and X-ray photoelectron spectroscopy. The electrical resistance and infrared emissivity of VO2 thin films under different temperatures were measured. The results show that the VO2 thin film derived from the V2O5 thin film annealed at 550°C for 10 hours is pure dioxide of vanadium without other valences. It was observed that the resistance of VO2 thin film with thickness about 600nm can change by 4 orders of magnitude and the 7.5-14μm emissivity can change by 0.6 during the phase transition.


2019 ◽  
Vol 30 (14) ◽  
pp. 13627-13635
Author(s):  
Zouheir Bouznif ◽  
Chohdi Amri ◽  
Ahmed Zarroug ◽  
Mohamed Hannachi ◽  
Lotfi Derbali ◽  
...  

2009 ◽  
Vol 203 (17-18) ◽  
pp. 2514-2520 ◽  
Author(s):  
H. Dibaji ◽  
M.M. Larijani ◽  
A. Novinrooz ◽  
M. Salehkootahi ◽  
R. Afzalzadeh ◽  
...  

2001 ◽  
Vol 17 (1-2) ◽  
pp. 327-330 ◽  
Author(s):  
Sang Hyuck Bae ◽  
Sang Yeol Lee ◽  
Hyun Young Kim ◽  
Seongil Im

2007 ◽  
Vol 1029 ◽  
Author(s):  
Shun-Wei Liu ◽  
Jia-Cing Huang ◽  
Chih-Chien Lee ◽  
Chin-Ti Lee ◽  
Juen-Kai Wang

AbstractIn this report, we demonstrate that the performance and stability of pentacene top-contact field-effect transistor can be greatly improved with post-annealing treatment. After post-annealing at 90°C for 12 hours in nitrogen environment, the hole field-effect mobility of 0.3 cm2/Vs and the on/off current ratio of 107 were achieved, demonstrating 100% improvement in performance after the post-annealing treatment. The decay rate of drain current at constant gate and drain-source voltage was found to be decreased by more than 40%. The improved performance is attributed to the elimination of trapped holes and lattice defects in the organic semiconductor layer due to the post-annealing process.


Sign in / Sign up

Export Citation Format

Share Document