Combined effects of solar radiation and airflow on endurance exercise capacity in the heat

2021 ◽  
Vol 229 ◽  
pp. 113264
Author(s):  
Hidenori Otani ◽  
Mitsuharu Kaya ◽  
Akira Tamaki ◽  
Heita Goto ◽  
Ken Tokizawa ◽  
...  
2016 ◽  
Vol 116 (4) ◽  
pp. 769-779 ◽  
Author(s):  
Hidenori Otani ◽  
Mitsuharu Kaya ◽  
Akira Tamaki ◽  
Phillip Watson ◽  
Ronald J. Maughan

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Toshio Mikami ◽  
Jimmy Kim ◽  
Jonghyuk Park ◽  
Hyowon Lee ◽  
Pongson Yaicharoen ◽  
...  

AbstractObesity is a risk factor for development of metabolic diseases and cognitive decline; therefore, obesity prevention is of paramount importance. Neuronal mitochondrial dysfunction induced by oxidative stress is an important mechanism underlying cognitive decline. Olive leaf extract contains large amounts of oleanolic acid, a transmembrane G protein-coupled receptor 5 (TGR5) agonist, and oleuropein, an antioxidant. Activation of TGR5 results in enhanced mitochondrial biogenesis, which suggests that olive leaf extract may help prevent cognitive decline through its mitochondrial and antioxidant effects. Therefore, we investigated olive leaf extract’s effects on obesity, cognitive decline, depression, and endurance exercise capacity in a mouse model. In physically inactive mice fed a high-fat diet, olive leaf extract administration suppressed increases in fat mass and body weight and prevented cognitive declines, specifically decreased working memory and depressive behaviors. Additionally, olive leaf extract increased endurance exercise capacity under atmospheric and hypoxic conditions. Our study suggests that these promising effects may be related to oleanolic acid’s improvement of mitochondrial function and oleuropein’s increase of antioxidant capacity.


2021 ◽  
Vol 7 (5) ◽  
pp. 333
Author(s):  
Lourdes Morillas ◽  
Javier Roales ◽  
Cristina Cruz ◽  
Silvana Munzi

Lichens are classified into different functional groups depending on their ecological and physiological response to a given environmental stressor. However, knowledge on lichen response to the synergistic effect of multiple environmental factors is extremely scarce, although vital to get a comprehensive understanding of the effects of global change. We exposed six lichen species belonging to different functional groups to the combined effects of two nitrogen (N) doses and direct sunlight involving both high temperatures and ultraviolet (UV) radiation for 58 days. Irrespective of their functional group, all species showed a homogenous response to N with cumulative, detrimental effects and an inability to recover following sunlight, UV exposure. Moreover, solar radiation made a tolerant species more prone to N pollution’s effects. Our results draw attention to the combined effects of global change and other environmental drivers on canopy defoliation and tree death, with consequences for the protection of ecosystems.


2017 ◽  
Vol 65 ◽  
pp. 26-31 ◽  
Author(s):  
Keisuke Takeshima ◽  
Sumire Onitsuka ◽  
Zheng Xinyan ◽  
Hiroshi Hasegawa

Sports ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 40 ◽  
Author(s):  
Sihui Ma ◽  
Katsuhiko Suzuki

A ketogenic diet (KD) could induce nutritional ketosis. Over time, the body will acclimate to use ketone bodies as a primary fuel to achieve keto-adaptation. Keto-adaptation may provide a consistent and fast energy supply, thus improving exercise performance and capacity. With its anti-inflammatory and anti-oxidative properties, a KD may contribute to muscle health, thus preventing exercise-induced fatigue and damage. Given the solid basis of its potential to improve exercise capacity, numerous investigations into KD and exercise have been carried out in recent years. This narrative review aims to summarize recent research about the potential of a KD as a nutritional approach during endurance exercise, focusing on endurance capacity, recovery from fatigue, and the prevention of exhaustive exercise-induced muscle and organ damage.


2016 ◽  
Vol 251 ◽  
pp. 396-403 ◽  
Author(s):  
Su-Yeon Choi ◽  
Jidong Sung ◽  
Hyo Eun Park ◽  
Donghee Han ◽  
Hyuk-Jae Chang

Sign in / Sign up

Export Citation Format

Share Document