Cell-free DNA: a non-invasive test for assessing embryo quality

Placenta ◽  
2011 ◽  
Vol 32 ◽  
pp. S281-S282 ◽  
Author(s):  
Paola Scaruffi ◽  
Shanti Levi ◽  
Gian Paolo Tonini ◽  
Paola Anserini
2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S390-S390
Author(s):  
Priya Edward ◽  
William V La Via ◽  
Mehreen Arshad ◽  
Kiran Gajurel

Abstract Background Mycoplasma hominis is typically associated with genital infections in women and is a rare cause of musculoskeletal infections often in immunocompromised hosts. Diagnosis of invasive Mycoplasma hominis infections are difficult due to challenges in culturing these organisms. Molecular diagnostics require an index of suspicion which may not be present at the time of tissue sampling. Accurate, rapid diagnosis of Mycoplasma hominis infections are important for antibiotic management. Methods Two cases of invasive Mycoplasma hominis infections are presented in which the Karius test (KT) was used to make the diagnosis. The KT is a CLIA certified/CAP-accredited next-generation sequencing (NGS) plasma test that detects microbial cell-free DNA (mcfDNA). After mcfDNA is extracted and NGS performed, human reads are removed and remaining sequences are aligned to a curated database of > 1400 organisms. Organisms present above a statistical threshold are reported. Case review was performed for clinical correlation. Results A young woman with lupus nephritis status post renal transplant developed persistent fever with progressive multifocal culture-negative osteoarticular infection despite empiric ceftriaxone. An adolescent female presented with an ascending pelvic infection progressing to purulent polymicrobial peritonitis (see table) requiring surgical debridement and cefipime, metronidazole and micafungin therapy; her course was complicated by progressive peritonitis/abscesses. Karius testing detected high-levels of Mycoplasma hominis mcfDNA in both cases – at 3251 molecules/microliter (MPM) in the first case and 3914 MPM in the second case. The normal range of Mycoplasma hominis mcfDNA in a cohort of 684 normal adults is 0 MPM. The patients rapidly improved with atypical coverage with doxycycline and levofloxaxin. Clinical findings in 2 patients with M. hominis infection detected by the Karius Test Conclusion Open-ended, plasma-based NGS for mcfDNA provides a rapid, non-invasive method to diagnose invasive Mycoplasma hominis infection. This case series highlights the potential to diagnose infections caused by fastidious pathogens to better inform antimicrobial therapy and achieve favorable outcomes. Disclosures William V. La Via, MD, Karius (Employee)


2021 ◽  
Vol 36 (5) ◽  
pp. 1186-1190
Author(s):  
Raoul Orvieto ◽  
Adva Aizer ◽  
Norbert Gleicher

Abstract Human embryos utilise an array of processes to eliminate the very high prevalence of aneuploid cells in early embryo stages. Human embryo self-correction was recently demonstrated by their ability to eliminate/expel abnormal blastomeres as cell debris/fragments. A whole genome amplification study has demonstrated that 63.6% of blastocysts expelled cell debris with abnormal chromosomal rearrangements. Moreover, 55.5% of euploid blastocysts expel aneuploid debris, strongly suggesting that the primary source of cell free DNA in culture media is expelled aneuploid blastomeres and/or their fragments. Such a substantial ability to self-correct downstream from the blastocyststage, therefore, renders any chromosomal diagnosis at the blastocyststage potentially useless, and this, unfortunately, also must particularly include non-invasive PGT-A based on cell-free DNA in spent medium. High rates of false-positive diagnoses of human embryos often lead to non-use and/or disposal of embryos with entirely normal pregnancy potential. Before adopting yet another round of unvalidated PGT-A as a routine adjunct to IVF, we here present facts that deserve to be considered.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Brian C.-H. Chiu ◽  
Chang Chen ◽  
Qiancheng You ◽  
Rudyard Chiu ◽  
Girish Venkataraman ◽  
...  

AbstractThe 5-methylcytosines (5mC) have been implicated in the pathogenesis of diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma (FL). However, the role of 5-hydroxymethylcytosines (5hmC) that are generated from 5mC through active demethylation, in lymphomagenesis is unknown. We profiled genome-wide 5hmC in circulating cell-free DNA (cfDNA) from 73 newly diagnosed patients with DLBCL and FL. We identified 294 differentially modified genes between DLBCL and FL. The differential 5hmC in the DLBCL/FL-differentiating genes co-localized with enhancer marks H3K4me1 and H3K27ac. A four-gene panel (CNN2, HMG20B, ACRBP, IZUMO1) robustly represented the overall 5hmC modification pattern that distinguished FL from DLBCL with an area under curve of 88.5% in the testing set. The median 5hmC modification levels in signature genes showed potential for separating patients for risk of all-cause mortality. This study provides evidence that genome-wide 5hmC profiles in cfDNA differ between DLBCL and FL and could be exploited as a non-invasive approach.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 3058-3058
Author(s):  
Jacob Carey ◽  
Bryan Chesnick ◽  
Denise Butler ◽  
Michael Rongione ◽  
Giovanni Parmigiani ◽  
...  

3058 Background: Circulating cell-free DNA (cfDNA) is largely nucleosomal in origin with typical fragment lengths of 167 base-pairs reflecting the length of DNA wrapped around-the histone and H1 linker. Given the nucleosomal origin of cfDNA, we have previously used low coverage whole genome sequencing to evaluate DNA fragmentation profiles to sensitively and specifically detect tumor-derived DNA with altered fragment lengths or coverage. Methods: Here we evaluate the use of Bayesian finite mixtures to model the fragment length distribution and demonstrate how the parameters from these models can be useful to distinguish between individuals with and without cancer. We examined the number of cfDNA fragments by size ranging from 100-220bp and approximated the mixture component location, scale, and weight using Markov Chain Monte Carlo. The performance of the method was determined using a ten-fold, ten repeat cross-validation of Gradient Boosted Machine model using 1) our previously described genome-wide fragmentation profile approach, 2) the parameters from the mixture model and 3) a combination of approaches 1) and 2) as features. Results: In this study of 215 cancer patients and 208 cancer-free individuals, we observed cross-validated AUCs of 1) 0.94, 2) 0.95, and 3) 0.97 among the three approaches. Conclusions: Our findings indicate that parsimonious mixture models may improve detection of cancer in conjunction with fragmentation profile analyses across the genome.


2018 ◽  
Vol 20 ◽  
Author(s):  
Ana Barbosa ◽  
Ana Peixoto ◽  
Pedro Pinto ◽  
Manuela Pinheiro ◽  
Manuel R. Teixeira

AbstractCirculating cell-free DNA (cfDNA) consists of small fragments of DNA that circulate freely in the bloodstream. In cancer patients, a fraction of cfDNA is derived from tumour cells, therefore containing the same genetic and epigenetic alterations, and is termed circulating cell-free tumour DNA. The potential use of cfDNA, the so-called ‘liquid biopsy’, as a non-invasive cancer biomarker has recently received a lot of attention. The present review will focus on studies concerning the potential clinical applications of cfDNA in ovarian cancer patients.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2085-2085
Author(s):  
Yvonne Daniel ◽  
Julia Van Campen ◽  
Lee Silcock ◽  
Michael Yau ◽  
Joo Wook Ahn ◽  
...  

Sickle cell disease (SCD) is the most common genetic haematological disorder worldwide. Around 300.000 affected infants are born every year, including at least 1000 in the United States. Prenatal diagnosis is currently carried out using amniotic fluid or chorionic villus sampling. These invasive procedures are perceived to have a small risk of miscarriage. The availability of non-invasive prenatal diagnosis (NIPD) is predicted to increase uptake of prenatal diagnosis for SCD, as it has no perceived miscarriage risk. NIPD may also be more readily implemented than invasive prenatal diagnosis in the low-resource countries in which SCD is the most prevalent. However, accurate NIPD of autosomal recessive disorders such as sickle cell disease has proven challenging as this requires detection of fetal inheritance of a maternal allele from a mixed maternal-fetal pool of cell-free DNA. We report the development of a targeted massively parallel sequencing assay for the NIPD of fetal SCD using cell-free fetal DNA from maternal plasma. No paternal or previous offspring samples were required. 44 clinical samples were analysed, including 37 plasma samples from pregnant SCD carriers and 7 plasma samples from women with SCD due to Hb SC. We used a relative mutation dosage based approach for the 37 samples from maternal SCD carriers (Hb AS or Hb AC), integrating Unique Molecular Identifiers (UMIs) into the analysis to improve the accuracy of wildtype and mutant allele counts. We used a separate wildtype allele detection approach for the 7 samples from women with compound heterozygous SCD, in whom the detection of wildtype cell-free DNA indicates the presence of a carrier fetus. The success of the assay was evaluated by comparing results with the established fetal sickle status as determined through either invasive prenatal diagnosis or newborn screening. During development, two key factors improved the accuracy of the results: i) Selective analysis of only smaller cell-free DNA fragments enhanced the fetal fraction for all samples, with greater effects observed in samples from earlier gestations. This approach improved diagnostic accuracy: for 3 out of 44 samples, the genotype was inconclusive or incorrect before size selection, but correct after size selection. ii) Modifications to DNA fragment hybridisation capture optimised the diversity of Unique Molecular Identifier-tagged molecules analysed. This led to improvements in the results obtained for 5 samples, with 3 previously inconclusive samples correctly called and 2 previously discrepant results moved into the inconclusive range. In total, 37 results were concordant with the established fetal sickle status; this included 30/37 samples from carrier women and 7/7 samples from women with sickle cell disease due to Hb SC. The remaining 7 carrier samples gave an inconclusive result, which for 3 samples was attributed to a low fetal fraction. Samples from as early as 8 weeks gestation were successfully genotyped. There were no false positive or false negative results. This study is the largest to use NGS-based NIPD on clinical plasma samples from pregnancies at risk of SCD. Efforts to validate the assay on a larger sample cohort and to reduce the inconclusive rate are warranted. This study shows that NIPD for SCD is approaching clinical utility and has the potential to provide increased choice to women with pregnancies at risk of sickle cell disease. Disclosures Silcock: Nonacus Ltd.: Employment.


2006 ◽  
Vol 27 (1) ◽  
pp. 11-17 ◽  
Author(s):  
Ying Li ◽  
Godelieve C. M. L. Page-Christiaens ◽  
Johan J. P. Gille ◽  
Wolfgang Holzgreve ◽  
Sinuhe Hahn

Sign in / Sign up

Export Citation Format

Share Document